• Title/Summary/Keyword: greenhouse production

Search Result 742, Processing Time 0.034 seconds

Reducing Greenhouse Gas Emissions in Ruminants : Minireview (반추동물에서 발생하는 온실가스의 저감방안 : 총설)

  • Kim, Eun-Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.185-200
    • /
    • 2012
  • It has been reported that world population continues to increase so that a matter of food security can be a world-wide problem for mankind. An anticipated rise in world population of 30% and the subsequent increased demand for food brings with it challenges in terms of global resource usage and food security. However, ruminant livestock production and consumption make a large contribution to the greenhouse gas (GHG) emissions which can be attributable to food production. Given the association between GHG and climate change, this is clearly of great concern to the livestock industry worldwide. Nevertheless, ruminant livestock also play an important role in global food security as they can convert the plant cell wall materials and non-protein nitrogen compounds, found widely in plants but indigestible to all monogastric animals including man, into high value proteins for human consumption. Much effort has been made to maximize animal production, feed conversion ratio, and to improve animal breeding in ruminant agriculture. In addition improving feed formulation techniques, developing chemical additives, plant extracts, and new plant varieties for grazing have been tested. Future ruminant production systems will need to capitalize on important benefits of ruminants. It is therefore suggested that ruminant agriculture has a key role to play in maintaining and enhancing provision of quality proteins and essential nutrients for human being but the challenge of reducing GHG emissions, and methane in particular, needs to be successfully addressed.

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

Implementation of Greenhouse Environmental Control Systems using Intelligence (지능을 이용한 온실 제어 시스템)

  • Yang, J.;Chung, C.D.;Hong, You-Sik;Ahn, B.I;Hwang, S.I.;Choi, Y.H.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.29-37
    • /
    • 2012
  • An experiment for an optimized automatic greenhouse environment in a flower farming greenhouse by building a ubiquitous sensor network with various sensors was conducted and the results were evaluated. And various culturing environmental information and data in the greenhouse were collected and analyzed. Then, the greenhouse was designed to maintain the best culturing environment on the basis of existing recommended optimized figures. By measuring the growth of the crops in the greenhouse, A system which controls facilities in the greenhouse to maintain the best culturing environment in accordance with change in the environment was analyzed.Computer simulation result proced that we discovered that controlling the facilities and the artificial light source increased production, enhanced quality, reduced labor and heating cost immensely. The experiment has proved that the u-flower farming system can maximize the income of farm families by sending warning messages to users of this system when weather suddenly changes so that users may cope with such changes and maintain the best culturing environment.

ANALYSIS OF WATER STRESS OF GREENHOUSE PLANTS USING THERMAL IMAGING

  • K. H. Ryu;Kim, G. Y.;H. Y. Chae
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.593-599
    • /
    • 2000
  • Accurate quantification of plant physiological properties is often necessary for optimal control of an automated greenhouse production system. Conventional crop growth monitoring systems are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system was used to accomplish rapid and accurate measurements of physiological-property changes of water-stressed crops. Thermal images were obtained from several species of plants that were placed in a growth chamber. Analyzing the images provided the pattern of temperature changes in a leaf and the amount of differences in the temperature of stressed plants and non-stressed plants.

  • PDF

Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography (열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF

Renewable Energy Policy in the UK - with Focus on Biomass (영국의 신재생에너지 정책-바이오매스를 중심으로)

  • Ryu, Chang-Kook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.260-265
    • /
    • 2008
  • As one of renewable energy sources, biomass is playing a major role in reducing the greenhouse gas emission in the UK. The country currently produces about 4.5% (18.1TWh in 2006) of the total electricity generation from renewables, where biomass-based sources accounts for 50% of the amount and the remainder mostly from hydro and windpower. In 2007, the UK government has announced its new energy policy through the Energy White Paper, which includes an ambitious national target of 60% cuts in carbon emission by 2050. Complementary strategic plans in key renewable energy technologies accompanied the Energy White Paper, including biomass strategy, waste strategy and low carbon transportation strategy. This paper summarizes the current status and policy of UK for renewable energy production with focus on the use of biomass and bioenergy.

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Long-Term Generation Expansion Strategies for the Reduction of $CO_2$ Emission in Korea (지구온난화 가스 배출 감소를 위한 장기 전원개발계획 전략)

  • Kim, K.I.;Park, J.B.;Kim, K.H.;Lee, S.C.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1083-1087
    • /
    • 1997
  • Every effort is now being exerted in industrialized and developing countries to reduce emission of greenhouse gases from electric power sector. In this paper, we provide supply-side resource mix strategies in the long-term generation expansion planning under the expected greenhouse gas regulations. Under the environmental regulations, we explore the least-cost generation expansion plan of Korea and determine the composition of future resource mixes. Our analysis is performed on the basis of the revised WASP package which can evaluate emission of carbon dioxide from each power plant. The evaluation process of carbon dioxide emissions, which can consider the efficiency and operating conditions of each generator simultaneously, has been incorporated into the probabilistic production cost simulation module of WASP.

  • PDF

Impact of Residential CHP Systems on Greenhouse Gas Emissions in Korea (가정용 열병합 시스템의 국내 도입에 따른 온실가스 저감효과 예측)

  • Kang, Byung Ha;Yun, Chang Ho;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The effects of applying the micro CHP system to the domestic sector in Korea were investigated using annual cooling and heating demand data. Four prime movers, micro gas turbine, PEMFC, gas engine and Stirling engine, were compared for three operational modes. Two way buy-back was assumed for both electricity and heat. The Stirling engine gave the lowest $CO_2$ emission per energy for 300kWh monthly electricity production. However, PEMFC became more effective when considering PURPA criteria. PEMFC generated the least greenhouse gas with higher electrical efficiency for cooling. The Stirling engine, however, became competitive for heating with higher total efficiency.

Energy Saving and Development of an Industrial Regenerative Oxy-Fuel Combustion Furnace for CO2 Capture (에너지 절약 및 이산화탄소 포집을 위한 축열식 순산소 연소로 개발)

  • Oh, Jeongseog;Noh, Dongsoon;Lee, Daegeun;Hong, Sungkook;Yang, Jebok;Ko, Changbok;Lee, Eunkyung
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.121-122
    • /
    • 2013
  • In recent years, the usage of fossil fuels has caused problems of climate change and global warming. Because the combustion of fossil fuels is related to the production of greenhouse gases ($CO_2$, $CH_4$, etc.), new technology in the field of combustion is needed in order to handle the crisis of climate change and the global warming. As one of the efforts to reduce the emission of greenhouse gases, the concept of regenerative oxy-fuel combustion for energy efficiency and carbon capture was suggested, In the current study, the development of an industrial regenerative oxy-fuel combustion furnace was introduced, which has been being performed at Korea Institute of Energy Research (KIER).

  • PDF