• Title/Summary/Keyword: greenhouse gas emission factor

Search Result 134, Processing Time 0.023 seconds

Estimation of Greenhouse Gas Emission from Off-road Transportation (비도로 수송에 의한 온실 가스 배출량 추정)

  • Choi, Min ae;Kim, Jeong;Lee, Ho Jin;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • Off-road transportation sector including construction equipment, ground support equipment in airport, cargo handling equipment and agroforestry machinery have not calculated as emission source classification in 1A3e2. In this study, the statistics of oil consumption for construction, aviation, shipping and agroforestry are separated for this sector by oil type. And the greenhouse gas emission by off-road transportation emission factor in 1996 & 2006 IPCC Guidelines are calculated and compared with each other. As a result, the nationwide $CO_2$ equivalent emission from off-road transportations by the emission factor of 1996 & 2006 IPCC Guidelines are calculated as 4,919 kton/yr and 5,530 kton/yr in 2007. The contribution ratio of off-road transportation emission by this study is estimated as 5.5% to the subtotal emission from on-road transport sector.

The Development of N2O Emission Factor at Killn Type Pyrolysis Melting Facility (외열킬른형 열분해용융시설의 N2O 배출계수 개발)

  • Yun, Hyun-Ki;Lee, Dae Kyeom;Cho, Changsang;Kang, Seongmin;Yoon, Young joong;Jeon, Youngjae;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • In this study, the $N_2O$ emission factor of the facility was developed by measuring the kiln type pyrolysis melting facility. This used PAS (Photoacoustic Spectroscopy) method and measured the $N_2O$ emission concentration. From March 2016 to April 2016, it was measured over a total of two times and $N_2O$ concentrations were measured continuously for 24 hours using a 24 hour continuous measuring instrument (LSE-4405). The measured $N_2O$ emission concentration of the pyrolysis melting facility was 0.263 ppm on average and the emission concentration distribution in the range of 0.013~0.733 ppm was obtained. Therefore, the $N_2O$ emission factor of the kiln-type pyrolysis melting facility was estimated to be $0.829gN_2O/ton$-Waste. As a result of comparing the $N_2O$ emission factor of the thermal kiln type pyrolysis melting facility and the previous study, previous studies were about 18 times higher. It is estimated that this is due to the difference of furnace temperature, oxygen concentration and denitrification facilities. It is considered that the study of the emission factor of pyrolysis melting facility is an important factor in improving the credibility of greenhouse gas inventory in waste incineration sector.

Development of Emission Factors for Greenhouse Gas CO2) from Anthracite Fired Power Plants in Korea (무연탄 화력발전소의 이산화탄소 배출계수 개발)

  • Jeon, Eui-Chan;Myeong, Soo-Jeong;Jeong, Jae-Hak;Lee, Sung-Ho;Sa, Jae-Whan;Roh, Gi-Hwan;Kim, Ki-Hyun;Bae, Wi-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • Although the anthracite power plant is an important source of greenhouse gas, research on this type of power plant has not been conducted much. The present study investigated the entire anthracite power plants in Korea and analyzed the emitted gas in connection with GC/FD and a methanizer in order to develop $CO_2$ emission factors. The study also sampled the anthracite to analyze the amount of carbon and hydrogen using an element analyzer, and to measure the calorie using an automatic calorie analyzer. The emission factors computed through the fuel analysis was 30.45 kg/GJ and that computed through the $CO_2$ gas analysis was 26.48 kg/GJ. The former is approximately about 15% higher than the latter. When compared the carbon content factors of anthracite with that of bituminous coal, the value of anthracite was 24% higher Compared with IPCC values, the emission factors by the fuel was 14% higher, and that by the emitted $CO_2$ gas was about 1.2% lower. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.

Estimation of Emission and Development of Emission Factor on Greenhouse Gas (CO2) of the Combustion Facilities (연소시설의 온실가스(CO2) 배출량 산정 및 배출계수개발)

  • Kim, Hong-Rok;Jin, Byong-Bok;Yoon, Wan-Woo;Kwon, Young-Sung;Lee, Min-Young;Yoon, Young-Bong;Shin, Won-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Since the Kyoto Protocol became into effect, Korea has been expected to be part of the Annex I countries performing the duty of GHG reduction in the phase of post-Kyoto. Therefore, it is necessary to develop emission factors appropriate to Korean circumstances. In order to develop emission factors this study utilized the CleanSYS, which is the real-time monitoring system for industrial smoke stacks to calculate the emission rate of $CO_2$ continuously. In this study, the main focus was on the power generation plants emitting the largest amount of $CO_2$ among the sectors of fossil fuel combustion. Also, an examination on the comparison of $CO_2$ emission was made among 3 generation plants using the different types of fuels such as bituminous coal and LNG; one for coal and others for LNG. The $CO_2$ concentration of the coal fired plant showed Ave. 13.85 %(10,384 ton/day). The LNG fired plants showed 3.16 %(1,031 ton/day) and 3.19 %(1,209 ton/day), respectably. Consequently, by calculating the emission factors using the above results, it was found that the bituminous coal fired power plant had the $CO_2$ emission factor average of 88,726 kg/TJ, and the LNG fired power plants had the $CO_2$ average emission factors of 56,971 kg/TJ and 55,012 kg/TJ respectably which were similar to the IPCC emission factor.

Estimation of Emission Factor (Residual Rate) and Inventory of HFC-134a from Mobile Air Conditioners of Scrap Truck (폐트럭으로부터 온실가스 HFC-134a의 탈루배출계수와 인벤토리 산정에 대한 연구)

  • Kim, Eui-Kun;Kim, Seungdo;Kim, Hyerim;Lee, Young Phyo;Byun, Seokho;Lee, Dong Won
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1105-1113
    • /
    • 2013
  • This paper attempted to estimate the emissions of HFC-134a from scrap truck as a result of measuring the residual quantities of HFC-134a in air conditioner of scrap truck. We measured the residual amounts in the scrap truck of 138 by applying commercial recover for refrigerants. The average residual rate(disposal-phase emission factor) is reported to be $44.3{\pm}3.3%$ within a confidence interval of 95%. Recent year model trucks exhibit the higher residual rates. Little variation, however, is observed in regard to vehicle size. The HFC-134a emission quantity from scrap truck in 2011 is estimated to be 55,908 $tCO_2$-eq that demonstrates 21.4% increase to compare with that in 2007. As the numbers of truck have increased dramatically during the last two decades, the emissions of HFC-134a from scrap truck would increase sharply in the next coming years. HFC-134a is a very high GWP greenhouse gas. therefore have to reduce the emissions from the scrap truck and need to find ways to recycle. The chemical compositions of refrigerants from scrap truck are quite similar to those of new refrigerants, suggesting that the refrigerants from scrap truck could be reused as refrigerant.

A Study on Characteristics of Pollutants from LNG Facilities (천연가스 사용설비 오염물질 배출특성 연구)

  • Lee, J.S.;Lee, H.C.;You, H.S.;Han, J.O.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.223-226
    • /
    • 2004
  • The thesis examined the charactcri:stlC of pollutants exhausted from LNG facilities. So, combustion gas and concentration of greenhouse gas exhausted from gas boiler for home use, furnace facilities, electric power facilities, boiler for industrial use and boiler for heating fueled LNG is measured. And the exhaust factor of pollutants is produced by classify of pollutants in detail. And this exhaust factor is compared and investigated with data of a foreign nations.

  • PDF

An Estimation of Direct and Indirect GHG-AP Integrated Emissions from Energy Sector in Seoul (2010) (서울시 에너지부문 직·간접 온실가스-대기오염 통합 배출량(2010) 산정)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.150-160
    • /
    • 2014
  • Greenhouse gas (GHG) and Air Pollution (AP) emission inventories have been constructed and estimated independently up-to-date in Seoul. It causes difficulty in GHG and AP integrated management due to a difference in emission inventories. In this study, we constructed GHG and AP integrated emission inventories for direct and indirect sources in Seoul during the year 2010 in Energy activities for estimating GHG and AP emissions were derived from IPCC guideline, guidelines for local government greenhouse inventories, air pollutants calculation manual, and Indirect Emission Factors (IEF) reported by Korea Power Exchange. The annual GHG emission was estimated as 50,530,566 $tonCO_{2eq}$, of which 54.8% resulted from direct sources and the remaining 45.2% from indirect sources. Among direct sources, transportation sector emitted the largest GHG, accounting for 47.3% of the total emission from direct sources. As with indirect sources, purchased electricity sector only emitted 98.6% of the total emission from indirect sources. The annual AP emission was estimated as 283,701 tonAP, of which 85.9% was contributed by the combined AP emissions of transportation and fugitive sectors. Estimation of individual air pollutant showed that the largest source were transportation sector for CO, $NO_x$, TSP, $PM_{10}$ and NH3, non-energy sector for $SO_x$, and fugitive sector for VOCs. This study found some limitations in estimating GHG and AP integrated emissions, such as nonconforming emission inventories between GHG and AP, and no indirect AP emission factor of purchased electricity, and so on. Those should be further studied and improved for more effective GHG and AP integrated management.

GHGs Emissions Based on Individual Vehicles Speed (개별차량 속도기반 온실가스 배출량 산정 연구)

  • Chang, Hyunho;Choi, Seonghun;Yoon, Byungjo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.560-569
    • /
    • 2019
  • Purpose: Greenhouse gases are one of the major causes of global warming, a global disaster. This study aims to calculate road sector greenhouse gas emissions more precisely than conventional methods. Method: Currently, the average speed of a vehicle is used to calculate greenhouse gas emissions. In this study, GHG emissions are calculated using the speed of individual vehicles and compared with current methods. Result: It was confirmed that the existing emission estimation method underestimated about 15% in the case of carbon dioxide, about 1% in the case of nitrous oxide, and about 1% in the case of methane. Conclusion: Current methods of estimating greenhouse gas emissions were developed before 2000 and were developed to meet the limits of available data. However, with the advancement of technology, the quality of available data is now high, and new emissions estimation methods are needed. Therefore, in this study, we propose a method for estimating the velocity-based greenhouse gas emissions of individual vehicles as a more accurate method for calculating greenhouse gas emissions.

Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation - (1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 -)

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun-il;Lee, Jong Sik
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

Developing N2O Emission Factor in Red Pepper Fields to Quantify N2O Emission of Agricultural Field

  • Kim, Gun-Yeob;Park, Woo-Kyun;Lee, Jong-Sik;Jeong, Hyun-Cheol;Lee, Sun-Il;Choi, Eun-Jung;Kim, Pil-Joo;Seo, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.598-603
    • /
    • 2014
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop National inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field by measuring $N_2O$ emissions in the red pepper cultivating field from 2010 to 2012. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0086{\pm}0.00043kg$ $N_2O-N\;kg^{-1}$ N resulted from three year experiment of the research sites. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.