• Title/Summary/Keyword: green degrees

Search Result 79, Processing Time 0.03 seconds

Importance of the Degree of Antigen Polymerization by Detoxification in Modulating the Immunogenicity of Acellular Pertussis Vaccine

  • Bae Cheon-Soon;Hong Sung-Sang;Ahn Sang-Jeom;Jang Yang-Suk;Hur Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.230-235
    • /
    • 2005
  • For the acellular pertussis vaccine with a high immunogenicity, the concentration, composition and characteristics of acellular pertussis antigens are the crucial points to be considered. Nevertheless, it has not been proved yet whether or not the polymerization degree, one of the characteristics of formalin-detoxified acellular pertussis antigens, has an influence on vaccine potency. Thus, in the present study, the correlations among detoxification conditions of acellular pertussis bulks, their polymerization degrees and their immunogenicities were examined. In addition, the relative importance of pertussis toxoid in vaccine immunogenicity was also investigated. Results show that a lower lysine concentration during detoxification induces highly-polymerized antigens, the immunogenicity has a great dependency on the polymerization degree of antigens, and also pertussis toxoid has a relatively stronger influence on the immunogenicity than other antigens. Accordingly, in the aspect of the potency of detoxified acellular pertussis vaccine, it can be demonstrated that the polymerization of antigens and its degree are the major factors affecting the immunogenicity along with a relatively high content of pertussis toxoid

Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent (유기첨가제가 수계에서 제조된 지르코니아 과립의 미세구조 및 성형밀도에 미치는 영향)

  • Jung, Ji-Hwan;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Spherical-type zirconia granules are successfully fabricated by a spray-drying process using a water solvent slurry, and the change in the green density of the granule powder compacts is examined according to the organic polymers used. Two organic binders, polyvinyl alcohol (PVA) and 2-hydroxyethyl methacrylate (HEMA), which are dissolved in a water solvent and have different degrees of polymerization, are applied to the slurry with a plasticizer (polyethylene glycol). The granules employing a binder with a higher degree of polymerization (PVA) are not broken under a uniaxial press; consequently, they exhibit a poor green density of $2.4g/cm^3$. In contrast, the granule powder compacts employing a binder with a lower degree of polymerization (HEMA) show a higher density of $2.6g/cm^3$ with an increase in plasticizer content. The packing behavior of the granule powders for each organic polymer system is studied by examining the microstructure of the fracture surface at different applied pressures.

Effect of water temperature and LED lights on the behavior of rock bream (Oplegnathus fasciatus) (돌돔 (Oplegnathus fasciatus)의 수온 및 LED 광원에 대한 행동 분석)

  • HEO, Gyeom;KIM, Min-Son;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.240-245
    • /
    • 2017
  • In order to study for the growth of fish in the aquaculture industry, the behavior analysis of rock bream (Oplegnathus fasciatus) depending on the temperature and LED lights was conducted. In this study, water temperatures from 10 to 30 degrees were used. One red light (wave length: 622 nm; light power: 811 mW) and one green light (wave length: 518 nm; light power: 648 mW) were used. Behavior of the rock bream was analyzed at an average moving distance for one minutes (AMD) and a rate of movement. The mean AMD were respectively 5.3 m, 7.3 m and 3.0 m in the red LED light, green LED light and control condition. The mean rates of movement were 77%, 88% and 61% respectively in the red LED light, green LED light and control condition. The mean AMD during 24 hours were 3.1 m, 3.1 m and 3.3 m respectively in the red LED light, green LED light and control condition.

Analysis of Solar Energy Storage Using Effectiveness on Single Span Plastic Greenhouse with Water Curtain System (수막재배 단동비닐하우스의 태양열 축열이용 효과분석)

  • Lee, S.H.;Ryou, Y.S.;Moon, J.P.;Yun, N.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.2-200.2
    • /
    • 2010
  • This study was carried out in order to reduce the amount of underground water which is used in the water curtain system for retaining heat. To proceed to the research, two plastic green houses of water curtain system were installed. One was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50cm in diameter filled with subsurface water. Storing surplus solar energy in the water filled in PVC duct was the method used to this house. Another was installed with FCU in the middle of the house, and was fitted a circulation motor in water tank for heat storage which was operated from 10 a.m. to 4 p.m. in order to interchange heat with FCU. The latter was installed with four FCUs which has a capacity of 8000kcal per hour. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of more than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. It happened that to prevent the water from freezing, mixing antifreezing liquid in the flowing water of FCU or changing the operating method of FCU was a suitable measure. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Therefore when supposed that the amount of water used in the house is 150~200ton for stable operation of FCU, using the system mentioned in the above research happened to be appropriate of reducing the amount of subsurface water from 80% to 100% when maintaining the interior of internal small tunnel's temperature for keeping warm air of 5 degrees celsius at the extreme temperature of minus 5 degrees celsius.

  • PDF

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Enzymatic Production of High Molecular Weight Chitooligosaccharides Using Recombinant Chitosanase from Bacillus thuringiensis BMB171

  • Kang, Lixin;Jiang, Sijing;Ma, Lixin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • The chitosanase gene (btbchito) of Bacillus thuringiensis BMB171 was cloned and heterologously expressed in the yeast Pichia pastoris. After purification, about 300 mg of recombinant chitosanase was obtained from the 1-1 culture medium with a specific activity of 240 units/mg. Results determined by the combined use of thin layer chromatography (TLC) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) showed that the chitooligosaccharides (COSs) obtained by chitosan (N-deacetylated by 70%, 80%, and 90%) hydrolysis by rBTBCHITO were comprised of oligomers, with degrees of polymerization (DP) mainly ranging from trimers to heptamers; high molecular weight chitopentaose, chitohexaose, and chitoheptaose were also produced. Hydrolysis products was also deduced using MS since the COSs (n) are complex oligosaccharides with various acetyl groups from one to two, so the non-acetyl COSs (GlcN)n and COSs with more acetyls (> 2) were not detected. The employment of this method in the production of high molecular weight COSs may be useful for various industrial and biological applications, and the activity of chitosanase has great significance in research and other applications.

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

The Potential of Building Information Modeling in Application Process of G-SEED

  • Chen, De Jian;Yoon, Heakyung
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.121-128
    • /
    • 2018
  • Given the barriers to implement green building rating systems, Building Information Modeling (BIM) was suggested as an effective solution integrating information into one model and saving substantial time to facilitate certification process. Synergies between BIM and Leadership in Energy and Environment Design (LEED), the most widely used rating system, have been researched for a few decades. This paper demonstrates literature review about the development of integration between BIM and LEED. The research focuses on synergies between BIM and Green Standard for Energy & Environmental Design (G-SEED) in Korea, as one of important strategies to mitigate greenhouse gas emission. The research compares LEED and G-SEED related items based on evaluation contents. The result manifests G-SEED and LEED share many common items in different degrees. Therefore, it is entirely possible for G-SEED and BIM to adapt same developing mode of LEED and BIM. Moreover, the study measures the potential of BIM in application process of G-SEED certification by investigation of credits in LEED and G-SEED can be earned by BIM. The results of paper indicate the documentation support LEED and G-SEED may be prepared directly, semi-directly and indirectly via sustainability analyses software in BIM.

Development of Dye Natural Batik Based on Fiber Coconut Waste and Leaf Avocado through Extraction Method in Supporting Green Business

  • Agung UTAMA;Anita MUSTIKASARI;Nur KHOLIFAH
    • Asian Journal of Business Environment
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2024
  • Purpose: The development of natural batik dyes based on a combination of coconut fiber waste and avocado leaves using the extraction method is important to support the green economy and reduce chemical waste in Indonesia. Research design, data and methodology: The research explores the use of coconut fiber and avocado leaf waste extraction as a natural batik dye and conducts market testing to assess consumer satisfaction. Results: Indonesian batik exports are growing, but synthetic dye practices are causing a decline in demand. To address this, natural dyes are being explored, including coconut fiber waste and avocado leaf waste. Conclusion: Test results from washing at 40 degrees Celsius in terms of color changes and color staining, from sweat in terms of changes in acid color and changes in base color, to sunlight in terms of color fastness value, to heat to iron in terms of color change and color staining shows a value of 3-4 (quite good) and 4-5 (good), meaning that coconut fiber and avocado leaves waste can be used as natural batik dye.