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Abstract

The radiation problem for oscillating bodies on the free surface has been formulated by the
over-determined Green integral equation, where the boundary condition on the free surface
is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are
removed by placing additional control points on the free surface surrounded by the body.
The B-Spline based higher order panel method is then applied to solve the problem
numerically. Because both the body geometry and the potential on the body surface are
represented by the B-Splines, that is in polynomials of space parameters, the unknown
potential can be determined accurately to the order desired above the constant value. In
addition, the potential expressed in B-Spline can be differentiated analytically to get the
velocity on the surface without introducing any numerical error. Sample computations are
performed for a semispherical body and a rectangular box floating on the free surface for
six-degrees of freedom motions. The added mass and damping coefficients are compared
with those by the already-validated constant panel method of the same formulation
showing strikingly good agreements.

Keywords: radiation problem, over-determined Green integral equation, B-spline,
higher order panel method

1 Introduction

The three-dimensional radiation problem for oscillating bodies of arbitrary shape on the
free surface has been studied by making use of a Green function satisfying the free surface
condition known as the Kelvin-type Green function(John 1950). He has derived an integral
equation, which is known as the Green integral equation where the potential on the body
boundary surface is the unknown. He has also pointed out that the solution of the Green
integral equation is not unique at certain frequencies known as the irregular frequencies.
(Guevel et al 1978) have derived a Kelvin- type Green function and analyzed the same
problem to solve the Green integral equation by making use of the constant panel method
where the velocity potential is constant on a planar panel. The solution mentioned above
has suffered difficulties in and around the irregular frequencies. (Kleinman 1982) has
extended the region of integration for the Green integral equation to the waterplane, but
could not prove the exactness of the solution. (Hong 1987) has derived an improved Green
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integral equation with symmetric kernel and proved the existence of the solution at the
irregular frequencies. He has showed that accurate solution of the potential as well as its
analytical derivative can be obtained at all frequencies including the irregular ones by
making use of the constant panel method developed(Guevel et al 1978). (Hong 1987) also
showed that the improved Green integral equation can be solved without the integral over
the waterplane. It leads to an over-determined Green integral equation due to the
non-symmetric kernel which can be solved in the least square sense(Hong and Lee 1999).
In this paper the higher order panel method(Lee and Kerwin 2003, Kim 2003) will be
called HiPan to distinguish with the constant panel method(or the low order panel method,
LoPan). It will be combined with the over-determined Green integral formulation(Hong
1987) to analyze the three-dimensional radiation problem. By adopting the HiPan, the
geometry can be expressed more accurately and the number of panels required to discretize
the surface will be smaller than the LoPan. To evaluate the new method, a hemispherical
body and a rectangular box floating on the free surface are chosen. The computed results
are then compared with those of the LoPan(Hong 1987). The comparison of velocity
between the two methods is not presented in this paper. It will be presented in the
calculation of drift force where the derivative of the potential plays an important role.

2 Intgral equation

We will choose a rectangular coordinate system as shown in Fig. 1 with the origin at the
undisturbed free surface. The x- and y-axes are located on the free surface and the
z -axis points vertically upward direction. The wetted surface is designated by §, the free
surface by S, and the waterline is designated by W . The body is in the 6-degrees of
freedom motion with small amplitudes from the undisturbed mean position at the circular
frequency of @.

Z(3)

Fig. 1 Coordinate systems

The displacement of the point M on the body ;IM from the mean position may be
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expressed as:
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where O, is the center of rotation of the body and a, the amplitudes of the 6-degrees of
freedom motions and are expressed as:

* *k
a, =a,coswt+a, sinwt

i )
=Re{a,e™}, k=12,.,6
where a, =a, +ia, is the complex motion amplitude. The velocity of the fluid around
the body can be obtained by taking the derivative of the velocity potentials as follows:

D, =Re{gre™}

6 (3)
P = _ia)z a4,
pa

where @, is the complex radiation potential. The complex valued potential will be
computed for the body in motion with the unit amplitude; that is, the body velocity is
assumed to be 1-cosar without losing generality. The complex motion amplitude a, is
determined by solving the equation of the motion in the frequency domain, which is
beyond the scope of the present paper.

2.1 Boundary conditions for the velocity potential ¢,

For motion of small amplitudes, the boundary condition on the body surface may be
applied on the mean position of the body as:

0
— ko + ﬂ =0 “)
oz
%:ék.ﬁM on S, k=123 (5)
on
% _ (6 xOM)-7y on S, k=456 ©

on

where S denotes the wetted surface and k,=w’/g the wave number, g the
gravitational acceleration. The potential should satisfy the radiation condition at infinity.
We will use the Kelvin-type Green function G(P,M; k,)of (Guevel et al 1978)
which satisfies the free surface boundary condition (4) and the radiation condition, and
then can express the velocity potential @, in the form of the Green integral equation as:

12
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L 4. ) aG(PnM k,) is,

Y (7)
L M) i p, Mk VdS,,, P on SUW

where P and M designate the field point and the source point, respectively.

3 Discretization of integral equation using B-splines

The geometry of the body may be expressed using B-Splines (Piegl and Tiller 1996) as:
X(u,v) = %"y N(w) M, (v) (®)
i’j

where X(u,v) denotes the B-Spline-represented surface, N (u) and M. ;) are the
B-Spline basis functions in the parametric spaces # and v, respectlvely, and x"ij is
the coordinates of the control vertices.

The velocity potential ¢ may also be expressed in the same manner as:

=20"N, )M, (v) 9)

where ¢";; is the control vertices to represent the potential in B-Splines.
N,(u) and M ;(v) are the B-Spline basis functions. It should be noted that the extent of
the parametnc spaces ¥ and v in (8) and (9) should coincide each other. We drop the
subscript & from the velocity potential ¢ used to distinguish the mode of motions
without losing the clarity. Because the problem is linear, the general solution will be the
linear combination of solutions to each mode.

We first discretize (7) in parametric spaces of # and v, and substitute (9) into (7) to
obtain the following:

{Z¢,,N(u)M (v)}+z L {Z¢,,N(M)M (v)} ds = Z L a¢Gars (10)

Rearranging the order of integration and the summation over the potential vertices in
the second term of (10), we will obtain the following:

{2¢ N@M, (v)}+22¢,,j; N,w)M, (v) dS ZL a¢GdS (11)

v i,j

The above equation is similar to the Green integral equation in LoPan, but differs in the
form of the integrand; especially the dipole induction integral has weight function formed
by the product of two B-Spline basis functions N,(#) and M (v) and the integration is
performed in the parametric spaces. Details to compute the induction integrals may be
found in (Kim 2003), and will not be repeated here.

13
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4 Computation of hydrodynamic forces

Once the potential is known, the radiation force and moment acting on the wetted surface
of the floating body can be computed as:

F=—ipw L¢Rﬁds (12)
M= ~ipa)_L OM x g, ndS (13)

The dimension of ¢, @, and ¢, ‘is L, where L is the characteristics length, and
the dimension of ¢, , ¢ and @ is L’ . All the physical quantities are
nondimensionalized as:

x=2,v=2 z-2
AR
~_ﬂ B
¢k_L: k_ls 273 (14)

¢7k¢kk456

Substituting (3) into (12) and (13) will lead to the following:

:—pa) Zak L¢knd5' (15)
M:—pwzzak [0.M x g,7ids (16)
k=1

The forces may now be expressed in terms of the added mass coefficient m, , the
Jj — directional force due to the k — directional motion, and s1m11arly—deﬁned wave
damping coefficient D as:

3
=ZFJEJ (17)
=1
‘ g=3, k=123
F.=—pa’L’> (m, +iD )a,, 18
=P kZ:;( & ) {q:4, k=45 6 (18)

Similarly the moments are now expressed by

3
M= Mg, )
j=1
2q6 . q=43k:1’2’3
M, =-pa’L kzzz‘(mjk +iDj)ay, q :5, k=4,5,6 )
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The added mass coefficients may now be expressed as:

my =-Re{ [gn,dS}, j=1,2,3 Q1)
m, =—Re J(O“LM xﬁ}-‘éj_ﬁkdg, j=4,506 (22)

The wave damping coefficients may now be expressed as:

D, =-Im{[gndS}, j=1,2,3 (23)
D, =-Im I(OCLM x EJ &,_,8,dS, j=456 (24)

5 Results and discussions

To evaluate the new formulation, a hemisphere with the diameter D =1 is chosen for
numerical computation. This body is simple enough in shape and has been tested by
previous works, and hence is proper as the first example to check the numerical algorithm.
Convergence on the discretization is first demonstrated in Figures 2 and 3, where the
number of panels in the parametric # and v directions is doubled showing the
graphically indistinguishable differences in the added mass and damping coefficients for
the sphere in sway motion at two selected wave numbers K =k D . Assuming the
convergence is achieved, the number of panels combination in both parametric directions
is chosen to be 12x 6 in all the subsequence computations.

Figures 4 and 5 show the added mass and damping coefficients for the hemisphere in
heave as a function of wave number. Computations are first made in accordance with the
most-commonly known Green integral formulation without any control points on the free
surface. It may be observed that at a wave number (in this case at X =5.13) the computed
force coefficients show spikes in the present HiPan formulation. This is the well-known
irregular frequency phenomenon. It is clearly seen that the present formulation, which
locates the control points on the free surface inside the body following (Hong 1987) in
addition to the traditional control points on the wetted body surface, eliminates the
irregular frequency completely. The similar computations are made for the hemisphere in
the sway motion and the results are shown in Figures 6 and 7. The same observation can be
made for this sway motion as in the heave motion. We see that the irregular frequencies are
present in the higher order panel methods, too, but can be removed completely by the
over-determined Green integral equation formulation.
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Fig. 2 Comparison of sway added mass coefficients computed by present method
for two different sets of panel numbers at selected wave numbers
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Fig. 3 Comparison of sway damping coefficients computed by present method for
two different sets of panel numbers at selected wave numbers

To validate the present higher order panel method, the computational results made for
the heave and sway motions are compared with those already-proved low order panel
method as shown in Figures 8 through 11. In both formulations the over-determined Green
integral equation is adopted.
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Fig. 4 Heave added mass coefficients versus wave numbers computed by present
method. Note the irregular frequency present at K =5.13 in traditional Green

integral formulation
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Fig. 5 Heave wave damping coefficients versus wave numbers computed by
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present method. Note the same irregular frequency present as in Fig. 4
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Fig. 6 Sway added mass coefficients versus wave numbers computed by present
method. Note the irregular frequency present at K =7.86 in traditional Green
integral formulation
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Fig. 7 Sway wave damping coefficients versus wave numbers computed by present
method. Note the same irregular frequency present as in Fig. 6
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Fig. 8 Comparison of heave added mass coefficients versus wave numbers
computed by HiPan and LoPan. In both methods the over-determined Green
integral formulation is adopted
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Fig. 9 Comparison of heave wave damping coefficients versus wave numbers
computed by HiPan and LoPan. In both methods the over-determined Green
integral formulation is adopted
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Fig. 10 Comparison of sway added mass coefficients versus.wave numbers
computed by HiPan and LoPan. In both methods the over-determined Green
integral formulation is adopted
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Fig. 11 Comparison of sway wave damping coefficients versus wave numbers
computed by HiPan and LoPan. In both methods the over-determined Green
integral formulation is adopted

And also numerical computation is performed for rectangular box with the

dimensions( Lx BxT =10x10x2 ). Figure 12 shows facet representation of the
rectangular box.
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Fig. 12 Facet representation of rectangular box

Figures 13 and 14 show the added mass and damping coefficients for the box in heave
as a function of wave number. Here the non-dimensional wave number is defined as
K =k,L for the rectangular box. Computations are first made in accordance with the
most-commonly known Green integral formulation without any control points on the free
surface. It may be observed that at a wave number (in this case at K =6.25) the computed
force coefficients show spikes in the present HiPan formulation. The similar computations
are made for the box in the sway motion and the results are shown in Figs. 15 and 16. The
same observation can be made for this sway motion as in the heave motion. We see that the
irregular frequencies are present in the higher order panel methods, too, but can be
removed completely by the over-determined Green integral equation formulation.

To validate the present higher order panel method, the computational results made for
the heave and sway motions are compared with those already-proved low order panel
method as shown in Figs. 17 through 20. In both formulations the over-determined Green
integral equation is adopted.
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Fig. 13 Heave added mass coefficients versus wave numbers for a floating box
computed by present method
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Fig. 14 Heave wave damping coefficients versus wave numbers for a floating box
computed by present method
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Fig. 15 Sway added mass coefficients versus wave numbers for a floating box
computed by present method
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Fig. 16 Sway wave damping coefficients versus wave numbers for a floating box
computed by present method
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Fig. 17 Comparison of heave added mass coefficients versus wave numbers for a
floating box computed by HiPan and LoPan. In both methods the over-determined
Green integral formulation is adopted
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Fig. 18 Comparison of heave wave damping coefficients versus wave numbers for
a floating box computed by HiPan and LoPan. In both methods the
over-determined Green integral formulation is adopted
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Fig. 19 Comparison of sway added mass coefficients versus wave numbers for a
floating box computed by HiPan and LoPan. In both methods the over-determined
Green integral formulation is adopted
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Fig. 20 Comparison of sway wave damping coefficients versus wave numbers for a
floating box computed by HiPan and LoPan. In both methods the over-determined
Green integral formulation is adopted

6 Conclusions

A B-Spline higher order panel method based on the over-determined Green integral
equation is formulated and is proved to produce accurate added mass and damping
coefficients in the radiation problem with the irregular frequencies removed complietely.

The B-Spline based higher order panel method is validated to give the same results as
the low order panel method, when both methods are formulated based on the same
over-determined Green integral formulation.

It is shown that smaller number of panels could provide the same accuracy as the low
order panel method.

Because the derivative to any order can be taken analytically in the higher order panel
method, the new method can be used for prediction of the drift forces requiring more
accurate second order computation.
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