• Title/Summary/Keyword: gravure ink

Search Result 49, Processing Time 0.025 seconds

Printability of an Aqueous Gravure Ink for Polyolefin (Polyolefin용 수성 Gravure Ink의 인쇄작성)

  • 김종원
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.1.1-11
    • /
    • 1994
  • The photosensitive properties and carrier transport in the organic photoconductor with the carrier transport layers(CTL) of polymer matrix doped with two carrier transport materials above carrier generation layer(CGL) containing oxotitanium phthalocyanine (TiOPc) were investigated. The CGL of TiOPc dispersed in poly(vinylbutyral) was formed as thickness of 0.1${\mu}{\textrm}{m}$and the carrier transport layer was prepared by coating polycarbonate and polyester doped with oxadiazoly(OXD), polyvinylcarbazole (PVK), trinitro fluorenone(TNF) as thickness of 10~15${\mu}{\textrm}{m}$, respectively. We have measured half decay exposure,sensitivity and xerographic gain from the photo-induced discharge curve(PIDC). In this work, it was found that the characteristics of carrier transport were mainly caused by the ionization potential difference of constitutive materials in molecularly doped polymer.

  • PDF

Design for the Coated Layer suitable with Conductivity Ink for RFID(II) -Effect of coated weight and calender pressure on coated paper- (RFID용 전도성 잉크에 적합한 도공층 설계 (제2보) -도공량과 캘린더 압력에 따른 도공지의 변화-)

  • Jung, Hae-Sung;Cho, Byoung-Uk;Kim, Chang-Kuen;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.30-34
    • /
    • 2011
  • This study was carried out in order to evaluate the effect of coated weight and calender pressure on conductivity of printed RFID tags. The printed RFID tags have been manufactured with gravure printing and it has been well known that the efficiency of printed RFID tags is influenced by surface properties of substrate. In this study, coated paper was prepared with four different coated weight and three different calender pressure. After printing conductivity ink on coated paper, surface resistance was measured to evaluate the efficiency of the printed RFID tag. It was found that, with increasing of coated weight and calender pressure, the paper gloss, smoothness, brightness and gravure printability were improved while the surface resistance of the printed RFID tag was decreased.

The analysis of film flow around rotating roller partially immersed in ink (잉크에 부분적으로 잠겨 회전하는 롤 주위의 액막 유동 해석)

  • Yu, Seung-Hwan;Kang, Soo-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2279-2284
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink, for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink viscosity, surface tension, roller rotating speed, immersed angle on the film thickness. The result indicates that the film thickness has a strong dependency on the fluid viscosity, while the surface tension has negligible effect.

  • PDF

Gravure Offset Printing for Printed Electronics (인쇄전자를 위한 그라비아 옵셋 인쇄)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.96-102
    • /
    • 2008
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology, with low cost and high productivity, can make it possible to produce printed electronics such as TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatus of gravure-offset printing are developed for fine line-width/gap printing and the results obtained from the apparatus shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. The printing results obtained from the system shows around 30 micro-meter line-width/gap printing patterns.

A Study on the G7 Calibration Application in Gravure Printing (그라비어 인쇄에서의 G7 Calibration 적용에 관한 연구)

  • Jang, Yeong-Yeop;Oh, Sung-Sang;Cho, Ga-Ram;Lee, Jae-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.31 no.1
    • /
    • pp.65-78
    • /
    • 2013
  • In gravure printing ink in printed flexible packaging considering the characteristics of the study more accurate color management options and results were as follows. When applying G7 calibration, P2P of the target GRACol G7 evaluate the delta $L^*$ and delta $F^*$, CMY and K-scale average of the results of delta $L^*$ and the highest tolerance G7 average of 1.5 and 3.0 are included in all the best. In addition, the average delta $F^*$ and super delta $F^*$, G7 tolerance by being included within the scope of color management, G7 calibration was possible. Target IT 8.7/4 CMYK, when applied to the calibration G7, Color gravure printing machine is applied to the average of the previous decreased from 12.4 to 3.6. In addition, if a digital proof is EPSON WT 7900 the average color applied to the previous reduction from 5.24 to 0.74 because of the gravure printing color proofing system was effective in the management. G7 calibration by applying the reference print profile of the Epson WT 7900-G-icc, the average was 0.74 coloration, and gravure-G-icc cases, the average color of the 3.60 per GRACol average of all the five colors below were included within the allowable range. Thus, the flexible packaging gravure printing color management of printed after applying the first G7 calibration, the results refer to the press by the profiling, and where best to take advantage of the profile creation was good.

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

A Treatment of Low-leveled High-volume VOCs Emitted from Printing Process Using Concentrator with Zeolite Adsorptive Honey Rotor and Catalytic Combustion System (제올라이트 흡착농축 및 촉매연소를 이용한 인쇄공정에서 발생되는 저농도 대풍량 VOCs 가스 제거)

  • Park, Chan-Gyu;Yoo, Nam-Jong;Choi, Bo-Kyung;Ko, Kwang-Baik
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 2009
  • This is a study on the volatile organic compounds(VOCs) concentrator with zeolite adsorptive honey rotor and catalytic combustion system for abating VOCs emitted from printing industry. VOCs emitted from the printing industry is mainly caused by organic solvent of printing ink. The content of organic solvents in printing ink varies from 40% to 75% and its content in the gravure ink is higher than that in any other ink. The average concentrations of each VOCs are 139 ppm for toluene, 152.1 ppm for MEK, 256.9 ppm for methanol and 42.9 ppm for isopropyl alcohol. We used zeolite honeycomb for absorbent of VOCs concentrator and palladium for catalyst combustion system. This system abated over 96% of emitted total VOCs, 98% of toluene, 100% of MEK, 92% of methanol and, 100% of isopropyl alcohol. It is concluded that the low-leveled high-volume VOCs emitted from printing process were removed almost by concentrator with zeolite adsorptive honey rotor and catalytic combustion system.