• Title/Summary/Keyword: graphical model

Search Result 498, Processing Time 0.027 seconds

A Study of 3-Dimension Graphic Monitoring System for Spent Fuel Dismantling Process

  • Kim, Sung-Hyun;Song, Tae-Gil;Lee, Jong-Youl;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.1-73
    • /
    • 2001
  • To utilize the uranium resources contained in the spent nuclear fuel generated from the nuclear power plants, the remote handling and dismantling technology is required. The dismantling process of the sport fuel is the most common process involved in the spent fuel recycling, the rod consolidation and the disposal processes. Since the machine used in the dismantling process are located and operated in isolated space, so called a hot cell, the reliability of machines is very important. To enhance the reliability of the process, in this research, the graphical monitoring system is developed for the fuel dismantling process. The graphic model of each machine is composed of many parts and every parts of the graphic model are given their own kinematics. Using the kinematics and simulating the graphic model in the virtual environment, the validity of the conceptual design can be verified before ...

  • PDF

Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M. Kh.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • This paper harnesses a micropolar thermoelastic medium consisting of voids to scrutinize the impacts of a magnetic field on it. To assess the problem, the three-phase-lag model (3PHL) has been employed and the analytical expressions of various variables under consideration have been derived using normal model analysis. The paper presents a graphical illustration of the material's stress, temperature, and dimensionless displacement. It has also been ensured that the predictions associated with results by different theories are not neglected instead; they are used to carry out appropriate comparisons in scenarios where the magnetic field is present as well as absent. The numerical results indicate that the magnetic field and the phase-lag of heat flux play a vital role in determining the distribution of field quantities. Thus, the investigation helped derive various interesting cases.

A Study on Logical Data Model for National Topographic Basedata (수치지도 데이터의 논리적 모델에 관한 연구)

  • 조우석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.139-147
    • /
    • 1998
  • The national topographic basedata should meet a variety of user requirements. To generate, maintain and handle the national topographic basedata in economic and effective way, the nationally supported research works on data model, structure and feature classification system should be intensively undertaken by government agency, research institute and university. This paper presents the technical definitions of conceptual and logical model for proposed data model representing digital map data. The key aspects of the proposed data model are flexibility for accommodating user requirements as well as step-by-step approach for modification as necessary m recent future. Conclusively, the proposed data model is a transitional data model between simple graphical model and object oriented data model.

  • PDF

A Computer Graphics Program for 2-Dimensional Strut-tie Model Design of Concrete Members (콘크리트 구조부재의 2차원 스트럿-타이 모델 설계를 위한 컴퓨터 그래픽 프로그램)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.531-539
    • /
    • 2017
  • The strut-tie model approach has been recognized as an efficient methodology for the design of all types of concrete members with D-regions, and the approach has been accepted in design codes globally. However, the design of concrete members with the approach requires many iterative numerical structural analyses, numerous graphical calculations, enormous times and efforts, and designer's subjective decisions in terms of the development of appropriate strut-tie model, determination of required areas of struts and ties, and verification of strength conditions of struts and nodal zones. In this study, a computer graphics program, that enables the design of concrete members efficiently and professionally by overcoming the forementioned limitations of the strut-tie model approach, is developed. In the computer graphics program, the numerical programs that are essential in the strut-tie model analysis and design of concrete members including finite element analysis programs for the plane truss and solid problems with all kinds of boundary conditions, a program for automatic determination of effective strengths of struts and nodal zones, and a program for graphical verification of developed strut-tie model's appropriateness by displaying various geometrical shapes of struts and nodal zones, are loaded. Great efficiency and convenience during the application of the strut-tie model approach may be provided by the various graphics environment-based functions of the proposed program.

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.

Optimization of Ingredient Mixing Ratio for Preparation of Steamed Foam Cake with Barley (Hordeum vulgare L.) Sproutling Powder (어린보릿가루 첨가 거품형 찜케이크의 재료 혼합비율의 최적화)

  • Seo, Min-Ja;Jung, Su-Ji;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.6 s.96
    • /
    • pp.815-824
    • /
    • 2006
  • This study was performed to determine the optimum ratio of each ingredient in the steamed foam cake with barley (Hordeum vulgare L.) sproutling powder. The experiment was designed according to the D-optimal design of mixture design, which showed 14 experimental points including 4 replicates for three independent variables (sugar 112${\sim}$139%, barley sproutling powder 1${\sim}$8%, and oil 5${\sim}$25%). The compositional and functional properties of test were measured, and these values were applied to the mathematical models. A canonical form and trace plot showed the influence of each ingredient on the mixture final product. The results of F-test, volume, color values (L, a, b), textural properties (hardness, gumminess, chewiness) and sensory characteristics (softness) decided a linear model, while the sensory characteristics (color, smell, taste, overall acceptance) decided a quadratic model. The volume of steamed foam cake was increased by sugar addition, and a negative effect was exerted by barley sproutling powder and oil. L and a of color values increased but the b value decreased with increasing sugar and oil content, whereas barley sproutling powder tended to decrease all color values. The addition of barley sproutling powder also had a positive effect on the textural properties (hardness, gumminess, chewiness). Sensory characteristics (color, smell, softness, taste, overall acceptance) could suffer counter results with the excessive addition of sugar, barley sproutling powder, and oil. The optimum formulations by numerical and graphical methods were similar: sugar, barley sproutling powder, and oil were 130.4%, 4.0%, and 10.7% by numerical method, compared to 130.4%, 4.0%, and 10.7% by graphical method, respectively.

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Extending the Multidimensional Data Model to Handle Complex Data

  • Mansmann, Svetlana;Scholl, Marc H.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.125-160
    • /
    • 2007
  • Data Warehousing and OLAP (On-Line Analytical Processing) have turned into the key technology for comprehensive data analysis. Originally developed for the needs of decision support in business, data warehouses have proven to be an adequate solution for a variety of non-business applications and domains, such as government, research, and medicine. Analytical power of the OLAP technology comes from its underlying multidimensional data model, which allows users to see data from different perspectives. However, this model displays a number of deficiencies when applied to non-conventional scenarios and analysis tasks. This paper presents an attempt to systematically summarize various extensions of the original multidimensional data model that have been proposed by researchers and practitioners in the recent years. Presented concepts are arranged into a formal classification consisting of fact types, factual and fact-dimensional relationships, and dimension types, supplied with explanatory examples from real-world usage scenarios. Both the static elements of the model, such as types of fact and dimension hierarchy schemes, and dynamic features, such as support for advanced operators and derived elements. We also propose a semantically rich graphical notation called X-DFM that extends the popular Dimensional Fact Model by refining and modifying the set of constructs as to make it coherent with the formal model. An evaluation of our framework against a set of common modeling requirements summarizes the contribution.