• Title/Summary/Keyword: graph isomorphism

Search Result 28, Processing Time 0.025 seconds

ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS

  • Zitnik, Arjana;Horvat, Boris;Pisanski, Tomaz
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.475-491
    • /
    • 2012
  • In 1950 a class of generalized Petersen graphs was introduced by Coxeter and around 1970 popularized by Frucht, Graver and Watkins. The family of $I$-graphs mentioned in 1988 by Bouwer et al. represents a slight further albeit important generalization of the renowned Petersen graph. We show that each $I$-graph $I(n,j,k)$ admits a unit-distance representation in the Euclidean plane. This implies that each generalized Petersen graph admits a unit-distance representation in the Euclidean plane. In particular, we show that every $I$-graph $I(n,j,k)$ has an isomorphic $I$-graph that admits a unit-distance representation in the Euclidean plane with a $n$-fold rotational symmetry, with the exception of the families $I(n,j,j)$ and $I(12m,m,5m)$, $m{\geq}1$. We also provide unit-distance representations for these graphs.

A Characterization of Isomorphism Problem of Combinatorial objects and the Historical Note (조합대상의 동형사상 문제의 특성화와 역사적 고찰)

  • Park, Hong-Goo
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.33-42
    • /
    • 2006
  • In this paper, we study the theoretical and historical backgrounds with respect to isomorphism problem of combinatorial objects which is one of major problems in the theory of Combinatorics. And also, we introduce a partial result for isomorphism problem of Cayley objects over a finite field.

  • PDF

COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.141-155
    • /
    • 2010
  • In this paper we prove that with some hypothesis the set of k-isomorphism classes of simple closed k-surfaces in ${\mathbf{Z}}^3$ forms a commutative monoid with an operation derived from a digital connected sum, k ${\in}$ {18,26}. Besides, with some hypothesis the set of k-homotopy equivalence classes of closed k-surfaces in ${\mathbf{Z}}^3$ is also proved to be a commutative monoid with the above operation, k ${\in}$ {18,26}.

NEW CONCEPTS OF REGULAR INTERVAL-VALUED FUZZY GRAPHS

  • TALEBI, A.A.;RASHMANLOU, HOSSEIN;DAVVAZ, BIJAN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.95-111
    • /
    • 2017
  • Recently, interval-valued fuzzy graph is a growing research topic as it is the generalization of fuzzy graphs. The interval-valued fuzzy graphs are more flexible and compatible than fuzzy graphs due to the fact that they allowed the degree of membership of a vertex to an edge to be represented by interval values in [0.1] rather than the crisp values between 0 and 1. In this paper, we introduce the concepts of regular and totally regular interval-valued fuzzy graphs and discusses some properties of the ${\mu}$-complement of interval-valued fuzzy graph. Self ${\mu}$-complementary interval-valued fuzzy graphs and self-weak ${\mu}$-complementary interval-valued fuzzy graphs are defined and a necessary condition for an interval valued fuzzy graph to be self ${\mu}$-complementary is discussed. We define busy vertices and free vertices in interval valued fuzzy graph and study their image under an isomorphism.

A Study on Image Pattern Recognition using Attributed Relational Graph (Attributed Relational Graph를 이용한 영상 패턴의 인식에 관한 연구)

  • Lee, Kwang-Kee;Jeon, Joong-Nam;Lee, Chang-Han;Lie, Han-Wook;Park, Kyu-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.687-690
    • /
    • 1988
  • Algorithms that represent given pattern in the form of an ARG (Attributed relational graph) using not only structural relations but also symbolic or numerical attributes, and then recognize that pattern by graph matching process are presented in this paper. Based on definitions of pattern deformational models, algorithms that can find GPECI(Graph preserved error correcting isomorphism). SGECI(subgraph ECI) and DSECI(Double subgraph ECI) are proposed and comparisons among these algorithms are described. To be useful in performig practical tasks, efficient schemes for extraction of ARG representation fron raw image are needed. In this study, given patterns are restricted within objects having distinct skeleton, and then the information which is necessary for recognition and analysis is successfully extracted.

  • PDF

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1479-1503
    • /
    • 2007
  • In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

Genesis and development of Schur rings, as a bridge of group and algebraic graph theory (Schur환론의 발생과 발전, 군론과 그래프론에서의 역할)

  • Choi Eun-Mi
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2006
  • In 1933, I. Schur introduced a Schur ring in connection with permutation group and regular subgroup. After then, it was studied mostly for purely group theoretical purposes. In 1970s, Klin and Poschel initiated its usage in the investigation of graphs, especially for Cayley and circulant graphs. Nowadays it is known that Schur ring is one of the best way to enumerate Cayley graphs. In this paper we study the origin of Schur ring back to 1933 and keep trace its evolution to graph theory and combinatorics.

  • PDF

REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.101-118
    • /
    • 2007
  • The notions of digital k-homotopy equivalence and digital ($k_0,k_1$)-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in $\mathbf{Z}^2$.

AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.199-215
    • /
    • 2014
  • Owing to the development of the notion of normal adjacency of a digital product [9], product properties of digital topological properties were studied efficiently. To equivalently represent a normal adjacency of a digital product, the present paper proposes an S-compatible adjacency of a digital product. This approach can be helpful to understand a normal adjacency of a digital product. Finally, using an S-compatible adjacency of a digital product, we can study product properties of digital topological properties, which improves the presentations of the normal adjacency of a digital product in [9] and [5, 6].

RICCI CURVATURE, CIRCULANTS, AND EXTENDED MATCHING CONDITIONS

  • Dagli, Mehmet;Olmez, Oktay;Smith, Jonathan D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.201-217
    • /
    • 2019
  • Ricci curvature for locally finite graphs, as proposed by Lin, Lu and Yau, provides a useful isomorphism invariant. A Matching Condition was introduced as a key tool for computation of this Ricci curvature. The scope of the Matching Condition is quite broad, but it does not cover all cases. Thus the current paper introduces extended versions of the Matching Condition, and applies them to the computation of the Ricci curvature of a class of circulants determined by certain number-theoretic data. The classical Matching Condition is also applied to determine the Ricci curvature for other families of circulants, along with Cayley graphs of abelian groups that are generated by the complements of (unions of) subgroups.