References
- C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.
- G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994), 1003-1011. https://doi.org/10.1016/0167-8655(94)90032-9
- G. Bertrand and R. Malgouyres, Some topological properties of discrete surfaces, Jour. of Mathematical Imaging and Vision 20 (1999), 207-221.
- L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
- L. Boxer, Digital Products, Wedge; and Covering Spaces, Jour. of Mathematical Imaging and Vision 25 (2006), 159-171. https://doi.org/10.1007/s10851-006-9698-5
- L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11(4) (2012), 161-179.
- L. Chen, Discrete Surfaces and Manifolds: A Theory of Digital Discrete Geometry and Topology, Scientific and Practical Computing, Rockville, 2004.
- S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18(1-2) (2005), 487-495.
- S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005), 115-129 .
- S.E. Han, Discrete Homotopy of a Closed k-Surface LNCS 4040, Springer-Verlag, Berlin, pp.214-225 (2006).
- S.E. Han, Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1) (2006), 215-216. https://doi.org/10.1016/j.ins.2005.03.014
- S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2) (2006), 120-134. https://doi.org/10.1016/j.ins.2005.01.002
- S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6) (2007), 1479-1503. https://doi.org/10.4134/JKMS.2007.44.6.1479
-
S.E. Han, Equivalent (
$k_0$ ,$k_1$ )-covering and generalized digital lifting, Information Sciences 178(2) (2008), 550-561. https://doi.org/10.1016/j.ins.2007.02.004 -
S.E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision 31(1) (2008), 1-16. https://doi.org/10.1007/s10851-007-0061-2 - S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae 108 (2010), 363-383.
-
S.E. Han, KD-(
$k_0$ ,$k_1$ )-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5) (2010), 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.E. Han, Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae 110(2) (2010), 921-944. https://doi.org/10.1007/s10440-009-9486-5
- S.E. Han, Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics & Computer Science, 20(4) (2010), 699-710.
- S.E. Han, Non-ultra regular digital covering spaces with nontrivial automorphism groups, Filomat, 27(7) (2013), 1205-1218. https://doi.org/10.2298/FIL1307205H
- S.E. Han and Sik Lee, Remarks on digital products with normal adjacency relations, Honam Mathematical Journal 35(3) (2013), 515-524. https://doi.org/10.5831/HMJ.2013.35.3.515
-
S.E. Han and B.G. Park, Digital graph (
$k_0$ ,$k_1$ )-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003). - F. Harary, Graph theory, Addison-Wesley Publishing, Reading, MA, 1969.
- G. T. Herman, Geometry of Digital Spaces Birkhauser, Boston, 1998.
- E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234.
- T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- W.S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977.
-
B.G. Park and S.E. Han, Classification of of digital graphs vian a digital graph (
$k_0$ ,$k_1$ )-isomorphism, http://atlas-conferences.com/c/a/k/b/36.htm (2003). - A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979), 76-87.
- A. Rosenfeld and R. Klette, Digital geometry, Information Sciences 148 (2003), 123-127 .
- E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.
Cited by
- COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.135
- REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY vol.37, pp.4, 2015, https://doi.org/10.5831/HMJ.2015.37.4.577
- UTILITY OF DIGITAL COVERING THEORY vol.36, pp.3, 2014, https://doi.org/10.5831/HMJ.2014.36.3.695