• 제목/요약/키워드: Cartesian adjacency

검색결과 5건 처리시간 0.018초

COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.135-147
    • /
    • 2015
  • Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.

AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.199-215
    • /
    • 2014
  • Owing to the development of the notion of normal adjacency of a digital product [9], product properties of digital topological properties were studied efficiently. To equivalently represent a normal adjacency of a digital product, the present paper proposes an S-compatible adjacency of a digital product. This approach can be helpful to understand a normal adjacency of a digital product. Finally, using an S-compatible adjacency of a digital product, we can study product properties of digital topological properties, which improves the presentations of the normal adjacency of a digital product in [9] and [5, 6].

GRAPHS AND NON-NORMAL OPERATOR(I)

  • Park, Young-Sik
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.147-159
    • /
    • 2000
  • In this paper, we investigate the properties of non-normal(convexoid, hyponormal) adjacency operators for a graph under two operations, tensor product and Cartesian one.

  • PDF

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.