• 제목/요약/키워드: graph embeddings

검색결과 15건 처리시간 0.02초

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

A Study on the Minimization of Layout Area for FPGA

  • Yi, Cheon-Hee
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.15-20
    • /
    • 2010
  • This paper deals with minimizing layout area of FPGA design. FPGAs are becoming increasingly important in the design of ASICs since they provide both large scale integration and user-programmability. This paper describes a method to obtain tight bound on the worst-case increase in area when drivers are introduced along many long wires in a layout. The area occupied by minimum-area embedding for a circuit can depend on the aspect ratio of the bounding rectangle of the layout. This paper presents a separator-based area-optimal embeddings for FPGA graphs in rectangles of several aspect ratios which solves the longest path problem in the constraint graph.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

Collaborative filtering by graph convolution network in location-based recommendation system

  • Tin T. Tran;Vaclav Snasel;Thuan Q. Nguyen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1868-1887
    • /
    • 2024
  • Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness.

ROLLING STONES WITH NONCONVEX SIDES II: ALL TIME REGULARITY OF INTERFACE AND SURFACE

  • Lee, Ki-Ahm;Rhee, Eun-Jai
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.585-604
    • /
    • 2012
  • In this paper we consider the evolution of the rolling stone with a rotationally symmetric nonconvex compact initial surface ${\Sigma}_0$ under the Gauss curvature flow. Let $X:S^n{\times}[0,\;{\infty}){\rightarrow}\mathbb{R}^{n+1}$ be the embeddings of the sphere in $\mathbb{R}^{n+1}$ such that $\Sigma(t)=X(S^n,t)$ is the surface at time t and ${\Sigma}(0)={\Sigma}_0$. As a consequence the parabolic equation describing the motion of the hypersurface becomes degenerate on the interface separating the nonconvex part from the strictly convex side, since one of the curvature will be zero on the interface. By expressing the strictly convex part of the surface near the interface as a graph of a function $z=f(r,t)$ and the non-convex part of the surface near the interface as a graph of a function $z={\varphi}(r)$, we show that if at time $t=0$, $g=\frac{1}{n}f^{n-1}_{r}$ vanishes linearly at the interface, the $g(r,t)$ will become smooth up to the interface for long time before focusing.