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Abstract 
 

Recommendation systems research is a subfield of information retrieval, as these systems 
recommend appropriate items to users during their visits. Appropriate recommendation results 
will help users save time searching while increasing productivity at work, travel, or shopping. 
The problem becomes more difficult when the items are geographical locations on the ground, 
as they are associated with a wealth of contextual information, such as geographical location, 
opening time, and sequence of related locations. Furthermore, on social networking platforms 
that allow users to check in or express interest when visiting a specific location, their friends 
receive this signal by spreading the word on that online social network. Consideration should 
be given to relationship data extracted from online social networking platforms, as well as 
their impact on the geolocation recommendation process. In this study, we compare the 
similarity of geographic locations based on their distance on the ground and their correlation 
with users who have checked in at those locations. When calculating feature embeddings for 
users and locations, social relationships are also considered as attention signals. The similarity 
value between location and correlation between users will be exploited in the overall 
architecture of the recommendation model, which will employ graph convolution networks to 
generate recommendations with high precision and recall. The proposed model is implemented 
and executed on popular datasets, then compared to baseline models to assess its overall 
effectiveness. 

 
Keywords: Location-based recommendation, point of interest, social recommender system, 
collaborative filtering, graph convolution network. 
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1. Introduction 

Recommendation systems suggest items to users within that systems. Items can include 
products on an online shopping platform, movies in a theater, books in a library, or tourist 
attractions. Recommendation systems must look for similarities between users as well as 
among items to archive good results. Based on the results, the system will select a set of items 
with high similarity scores and recommend them to the intended users. In a world of explosive 
information nowadays, both the number of users and the number of items grow rapidly. 
Classical recommendation models that use matrix factorization (MF) [1] and singular value 
decomposition (SVD) techniques [2] are quickly overloaded because the size of the user and 
product interaction matrix grows rapidly, and the value is constantly updated over time. 
Furthermore, the system's calculation speed must be fast enough to make timely 
recommendations. These factors make it difficult for information mining models to process 
data from a variety of sources quickly. 

Graph neural network-based recommendation models calculate feature embeddings for 
both users and items, as well as the level of interaction between a specific user and a candidate 
item. The collaborative filtering mechanism is used during the propagation process, which has 
the outstanding advantages of directly recognizing similarities between users when they share 
many interacted items, as well as indirectly when the process of iterative propagation creates 
a chain of interactions that can be extended from user to item to user. The size of the 
embeddings is chosen so that data loss after the learning process stays within an acceptable 
threshold. Not only is the interaction between users and items investigated, but contextual 
information also influences the overall recommendation results. The first significant source of 
information is the user's real-life relationships or friend information obtained from online 
social networking platforms. According to [3, 4, 5], advice from friends gave more weight 
than other sources of information, so friendship data must be incorporated into the overall data 
retrieval process. Items will be correlated if they belong to the same catalogue or a closely 
related product group. When items are geographical locations within a city or area, their actual 
distance will reflect the correlation observed during a visit by a specific user. When a user is 
staying in a specific location, nearby locations are obviously more likely to be visited than 
farther locations. 

In this article, we propose a model for transforming input data into interaction information 
matrices for users and items, correlation between users, and item similarities. These 
information matrices will be interacted with to spread information, with the goal of recording 
the characteristics of each user and item and perfecting the model-based recommendation 
system. In the following chapters, we also experiment on popular datasets, compare the results 
to various measures, and discuss the results. 

2. Related work 
In this chapter, we present important foundations for the proposed model, including 

publications on collaborative filtering (CF), graph convolution networks (GCN), social 
recommendation system models, location-based applications, and related data processing 
techniques. 
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2.1 Social-aware recommendation system 
When online social networks first appeared and were integrated into e-commerce platforms, 

social recommendation systems were developed. These systems provide users with 
personalized titles based on their actions, such as clicks, sharing, and commenting. Additional 
data from social networks is also analyzed to determine the influence of their friends [3]. The 
vast amount of information on social networks has influenced users, causing them to share the 
same concerns as their friends [6, 7]. 

ContextMF is an MF-based algorithm that uses contextual information in the 
recommendation process. This method combines social and rating data using probabilistic 
matrix factorization [8]. TrustSVD [4], built on SVD++ [9], includes the impact of friends on 
social relationships as additional implicit feedback for the observed users. GraphRec is a graph 
neural network-based algorithm developed for social recommendation tasks. GraphRec 
employs a novel graph neural network framework to simultaneously capture interactions and 
opinions in the user-item graph. It coherently models two graphs with different strengths [10]. 
SocialLGN is a graph neural network-based algorithm specifically designed for social 
recommendation tasks. SocialLGN employs a graph to learn user and item embeddings by 
propagating information from the user's social network [11]. It has been shown to outperform 
other cutting-edge social recommendation methods on several benchmark datasets. The 
complex relationship between social relationship data and user influence in shopping is 
difficult to understand because it changes over time and depends on the type of item. The 
Social Cognitive Self-Monitoring Tri-training (SEPT) model [12] uses three graph encoders 
to derive temporal signals from user social relationships, user correlations when interested in 
similar items, and information-sharing to improve recommendation predictions. The self-
monitoring learning process in that model increases the effectiveness of the recommendations. 

2.2 Graph convolution network 
Graph neural network (GNN) is a type of neural network that operates on datasets as graphs 

[13]. Graphs are data structures that consist of nodes and edges. A node can be either a user or 
an item, and edges define the relationships between nodes. Inheriting the advantages of GNN, 
GCN continues to explore the correlation between nodes through more hops by repeating the 
CF process with the propagation process on the graph. GCNs apply filters to the graph, 
inspecting nodes and edges that can be used to classify other nodes in the data. GraphSAGE 
is a type of graph convolutional network that learns node embeddings by gathering data from 
the node's immediate surroundings [14]. It works by selecting a fixed number of neighbors for 
each node and aggregating their features to calculate the node embedding. GraphSAGE can 
be applied to a variety of tasks, including node classification, link prediction, and graph 
classification. NGCF is a type of graph convolutional network intended for CF tasks [15]. 
NGCF employs a neural network to learn node embeddings by combining data from the node's 
local neighborhood and the global graph structure. To compute the node embedding, it uses a 
weighted sum of the embeddings of its neighbors. LightGCN is a simplified version of NGCF 
that is intended to be more efficient and scalable [16]. This model learns node embeddings 
through a simple graph convolution operation that propagates information from the node's 
neighbors. It computes the node embedding in a similar fashion to NGCF. LightGCN has 
demonstrated state-of-the-art performance on several benchmark datasets while being 
significantly faster than other methods. In a recent publication [17], we used the GCN model 
to combine user friendship signals and interaction data. In that model, we calculated users' 
influence weights and used them as attention signals, accelerating convergence during the 
collaborative filtering process. 
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2.3 Location-based recommendation system 

 
Fig. 1. An overview of a location-based recommendation system that aggregates signals from 

collaborative filtering of common locations and geographical distance using the Haversine equation. 
 
As shown in Fig. 1, the location-based recommendation system will look at the user's 

check-in history and recommend other suitable locations. We can refer to famous or popular 
places as points of interest (POI). Traditional POI recommendation methods treat POIs as 
items and use techniques such as CF and MF [18] on the interaction matrix between users and 
POIs. However, a POI is more than just an item; it is also associated with geographical 
information and the user's appearance time at that location, which is why models should 
consider including those pieces of information in the signal collection process. The PACE 
model in publication [19] proposed a semi-supervised deep learning model based on CF to 
mitigate the effects of data sparsity by anticipating users' preferences and contexts. 
Furthermore, since trust between users influences recommendation results; the model in [20] 
incorporated a trust impact factor among users into their model. MF was also used in Rank-
geofm [21], which combined time and location data into user check-in sequences and 
calculated location scores. Geo-Teaser in [22] predicts locations by combining a temporal POI 
embedding model with a geographical preference ranking. GeoIE [23] applied geographical 
model influence on POIs using the inner product of geo-susceptibility vectors and geography 
influence. When a user visits multiple POIs over time, they become clustered and are 
accounted for by Tobler's first law of geography [24]. These clusters also have multi-center 
characteristics, indicating separate visited locations. A two-dimensional KDE was used to 
learn the spatial clustering phenomenon [25, 26] and estimate the number of clusters. GeoSAN 
[27] proposed a self-attention-based POI encoder that integrates into the self-attention network 
to survey the user's travel history. 
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3. Proposed model 
In this chapter, we propose a POI recommendation model that includes data preprocessing 

operations, input matrix construction, GCN model propagation processes, loss functions, and 
prediction methods for recommendations. In Table 1, we define the notation used in this 
publication. 

 
Table 1. Notation in equations and model. 

Notation Explanation 
ui user i in the recommendation system 
ij location j in the recommendation system 
eu output features embedding of users 
ei output features embedding of locations 
eu

k embedding of users in layer kth 
ei

k embedding of items in layer kth 
es embedding of social friendship between users 
ed embedding of the Jaccard index of locations 
eloc embedding of geographical distance between locations 
Rnxm check in matrix of n users at m locations 
Snxn matrix contains social relationships between n users 
Jmxm matrix contains the Jaccard index between m locations 

 

3.1 Data preprocessing 
We propose Algorithm 1 for removing users with fewer than k check-ins from the dataset. 

The datasets extracted from social networking platforms contain information about the user's 
interaction with the item as well as the characteristics of the items in the system. Location-
based recommendation systems provide a longitude and latitude value for a given location. 
The interaction between the user and the item is limited because the user only interacts with a 
few items. Furthermore, only users with a few check-ins at k locations are retained to ensure 
that outliers do not skew the recommendation results. 
 

Algorithm 1. Remove outlier items in the original dataset 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Input: U × I {Check-ins of users on locations in original dataset} 
Output: R ⊆ U × I 
original_ratio = |U| / |I| 
for each location i ∈ I do 
 if location i has at least k check-ins then 
  I ← location i 
 end if 
end for 
p ← size of set I 
q ← p ÷ original_ratio 
for each user u ∈ U do 
 set_u ← list of location checked-in by user u 
 correlation_u ← Jaccard index between I and set_u 
end for 
U ← q users with highest correlation_u 
R = U × I 
return R 
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This method is known as k-core and is commonly used in publications [15, 16]. In our 
experiment, we will use a 10-core setting, as is common in similar publications. On the other 
hand, using location data, we can calculate the correlation between each pair of locations based 
on their geographical distance. Geographic distance is one of the most important factors 
influencing users' decisions to move. Algorithm 1's constant selected_ratio can be used to 
adjust the ratio of users to locations in datasets after processing and removing outliers. We can 
also select a scale whose value is equal to the ratio of the original dataset. 

3.1.1 Locations correlation by distance 
Geographic location refers to a position on Earth that can be defined by two coordinates: 

longitude and latitude. POIs are well-known public geographic locations, such as attractions, 
airports, bus stations, museums, and restaurants. When a user visits a point of interest (POI), 
he or she can check in using mobile apps and online social networking platforms. The 
geographic coordinates of this POI are recorded using the mobile device's built-in GPS. The 
geographical distance between two POIs influences users' decisions about future POIs they 
want to visit. The Haversine formula can be used to calculate the geographical distance 
between two locations where information is provided: longitude and latitude, as represented 
in (1). 

 

 𝑑𝑑 = 2𝑟𝑟 sin−1 ��sin2 �𝜑𝜑2−𝜑𝜑1
2

�+ cos𝜑𝜑1 . cos𝜑𝜑2. sin2 �𝜆𝜆2−𝜆𝜆1
2

�� (1) 

where: 
• d is the distance between the two locations, 
• r is the radius of the earth, 6371 km, 
• φ1, φ2 are the latitude of location 1 and 2, respectively, 
• λ1, λ2 are the longitude of location 1 and 2, respectively. 

 

With a dataset of m locations, we create a matrix D with dimensions m×m in which each 
element Di,j represents the distance d between POI i and POI j using (1). That matrix will be 
used to calculate the geographical distance embedding eloc in our proposed GCN model. 

3.1.2 Locations correlation by collaborative filtering 
In addition to their geographic location, POIs have other features that entice users to visit 

them. The number of users who have checked in at both locations can be used to determine 
their similarity. According to the publication [28], a weight matrix representing similarity can 
be calculated using the equation 𝑊𝑊 = 𝑅𝑅.𝑅𝑅𝑇𝑇 , where R is the matrix representing interaction 
between users and items. The value of each element Wi,j is the number of users checking in 
at locations i and j. However, the frequency with which a user checks in must also be 
considered, as the more they interact with the system, the more reliable their recommendations 
become. This data was not recorded in matrix W. 

To take advantage of information in both, the number of users who have checked into the 
same location and how frequently those users interact with the system, we propose using the 
Jaccard index to determine the logical correlation between locations. If many users visit the 
two locations at the same time, we anticipate a high degree of similarity between them. As a 
result, the Jaccard index, shown in Fig. 2, is appropriate for measuring this similarity and can 
be calculated as (2). 
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 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽�𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗� = 𝑈𝑈𝑗𝑗 ⋂𝑈𝑈𝑗𝑗
𝑈𝑈𝑗𝑗 ⋃𝑈𝑈𝑗𝑗

 (2) 

 
where Ui and Uj represent the sets of users who have interacted with POIi and POIj, 
respectively. 
 

 
Fig. 2. Calculating Jaccard index from two sets of locations checked-in by user A and user B. 

 
However, it is worth noting that propagation in the GCN model captures collaboration 

signals from the high-order connectivity graph. That is, the indirect influence of the user on 
the item is also considered, such as user - item - user - item - and so on [3, 15, 16, 17, 28]. In 
the process, weighting matrices were added to speed up signal collection. This technique has 
the side effect of overlearning, in which the system focuses on a small number of users or 
items while eliminating the possibility of low-interaction users or items. To address this issue, 
we proposed two approaches: calculate the matrices' normalized values or cluster them into 
different weighted categories. In this publication, we will look at clustering into quartiles in 
Table 2. After all, the matrix containing convert values will be used to compute the embedding 
of the Jaccard index in our proposed GCN model. 

 
Table 2. Clustering the correlation between locations by Jaccard index. 

Jaccard index 
quartile Q1 Q2 Q3 Q4 

Denotation Completely 
unrelated 

Low level 
correlation 

High level 
correlation 

Strongly 
related 

Convert values 0.0 0.05 .5 1.0 
 

3.1.3 Social relation 
In the evolution of social networking platforms, users not only post or check in to places 

but also interact with one another and can become friends on the same or other social 
networking platforms. Once users become friends, they can receive reviews, advice, and 
interactions from others in their friend group. These interactions are consistently more 
powerful than those with strangers [3, 4, 5, 29]. Furthermore, social networking platforms tend 
to expand a user's network of friends to attract users and increase their time spent on the 
platform. 
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In our proposed model, the friendship relationship is extracted from the social networking 
platform and graphically represented by an undirected graph, then stored as a matrix S which 
defined by (3). That matrix will be used to compute the embedding of online platform social 
friendship relationships es in our proposed GCN model. 

 

 𝑆𝑆𝑖𝑖,𝑗𝑗 = �1, 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (3) 

 

3.2 Our proposed GCN model 

In this section, we propose a model for deconstructing and analyzing information from the 
inputs, resulting in a prediction matrix as the output. An overview of our proposed model is 
shown in Fig. 3. 

Fig. 3. Overview on our proposed GCN model. 

Important components of the model include: 
 

• Matrix R for recording users checking in to locations: In recommendation systems, 
the interaction between users and items can be represented in two ways: implicitly and 
explicitly. Implicit datasets store the interaction in binary form, whereas explicit 
datasets store the user's rating of the item during the interaction. E-commerce systems 
frequently allow users to rate or provide feedback on items they have purchased or 
viewed. 

• The information enrichment matrices D, J, and S were introduced in the previous 
section: The first one is matrix D that contains the geographic distance matrix between 
locations. The second matrix J contains correlation data between locations using the 
Jaccard index measure. And the last matrix S is the user-extracted friendship data from 
online social networking platforms. It is important to note that the user friend matrix 
is optional, as not all e-commerce platforms or recommendation systems collect this 
information. 

• Embeddings in GCN layers: Embeddings are useful for reducing the dimensionality 
of input information matrices while minimizing information loss. The size of the 
embedding is passed to the model as a parameter. Initially, the embeddings are 
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initialized using the Xaivier method [30]. We will discuss embeddings in detail in the 
following sections. 

Algorithm 2. describes in detail the calculation steps for the GCN model with K 
embedding layers. To capture signals, the user and item embeddings are splitted at each 
iteration. After that, they are combined and stacked to form the final embedding, which returns 
for the next iteration as an ego embedding. 

 
Algorithm 2. Propagation by Graph Convolution Network 

 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Input: Matrices A, S, J, D  
Output: feature embedding of users and items 
ego_emb, es, ed, eloc = embedding.initialized() 
es = S.es;  
ed = J.ed;  
eloc = D.eloc; 
for k ∈ 𝟎𝟎,𝑲𝑲− 𝟏𝟏 do 
 embedk = A.ego_emb 
 split embedk into eu

k and ei
k 

 eu
k+1 = fcombination(eu

k, es) 
 ei

k+1 = fcombination(ei
k-1, ed, eloc) 

 embedk+1 = concatenate(eu
k+1, ei

k+1) 
 ego_emb = embedk+1 
end for 
embed = mean(embedk) with k ∈ 1,𝐾𝐾 
eu, es = embed.split() 
return embedding of users eu and items ei 

 

3.2.1 The check-in matrix A 

To realize the process of spreading high-order connectivity, the check-in matrix R must be 
designed in Laplacian form [15]. Then, A is a square matrix of size (n+m), where n and m 
represent the number of users and locations in the dataset, respectively. 0 is a square matrix in 
which all elements have the value zero. We illustrated the structure of matrix A in Fig. 4. 

Fig. 4. The check-in matrix layout enables concurrent propagation updates for embeddings of users 
and items. 
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The Laplacian form of R can be calculated as (4). 
 

𝐴𝐴 = � 0 𝑅𝑅
𝑅𝑅𝑇𝑇 0� 

 

𝐴̃𝐴 = 𝐷𝐷−12𝐴𝐴𝐷𝐷−12 

(4) 

where D is the diagonal degree matrix and 0 is the all-zero matrix. 

3.2.2 Propagation process for user embedding 
The feature signals are captured from input matrices as in (5), our model propagates the  

user embeddings 𝑒𝑒𝑢𝑢𝑘𝑘  and item embedding 𝑒𝑒𝑖𝑖𝑘𝑘  on the light graph convolution model [16] at 
every kth layer. After each calculating of each layer, we obtains embeddings 𝑒𝑒𝑢𝑢𝑢𝑢

(𝑘𝑘+1) and 𝑒𝑒𝑠𝑠
(𝑘𝑘+1), 

that contains signals of high-order propagation. The embedding 𝑒𝑒𝑢𝑢𝑢𝑢
(𝑘𝑘+1)  keeps user-item 

interaction signals in the matrix A, while the embedding 𝑒𝑒𝑠𝑠
(𝑘𝑘+1) keeps social signals between 

users in matrix S. The matrix S is optional because some e-commerce platforms do not store 
user friendship information. 

 

𝑒𝑒𝑢𝑢𝑢𝑢
(𝑘𝑘+1) = �

1

��Ν𝑢𝑢𝐴𝐴��Ν𝑖𝑖𝐴𝐴�𝑖𝑖∈Ν𝑢𝑢𝐴𝐴
𝑒𝑒𝑖𝑖

(𝑘𝑘) 

 

𝑒𝑒𝑠𝑠
(𝑘𝑘+1) = �

1

��Ν𝑢𝑢𝑆𝑆��Ν𝑠𝑠𝑆𝑆�𝑠𝑠∈Ν𝑢𝑢𝑆𝑆
𝑒𝑒𝑢𝑢

(𝑘𝑘) 

(5) 

 
where �𝑁𝑁𝑞𝑞𝑋𝑋� denotes the number of nearby items of user q in the matrix X with X = [A, S].  

The foundation of (5) is based on the symmetric normalization element, which was used in 
most GCN models [15, 16, 17, 29]. Then the (k+1) th user embeddings are combined by (6). 

 
 𝑒𝑒𝑢𝑢

(𝑘𝑘+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾 �𝑒𝑒𝑢𝑢𝑢𝑢
(𝑘𝑘+1), 𝑒𝑒𝑠𝑠

(𝑘𝑘+1)� (6) 
 
After K iterations of the propagation process, we receive (K) users’ embeddings. The final 

embedding of users will be calculated as (7). 
 
 𝑒𝑒𝑢𝑢 = 1

𝐾𝐾
∑ 𝑒𝑒𝑢𝑢

(𝑘𝑘)𝐾𝐾
𝑘𝑘=1  (7) 

 
The result embedding is the mean value of all embeddings at all layers calculated with (7), 

and this function can be replaced with others such as sum, maximum, and median. 
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3.2.3 Propagation process for item embedding 
Item embedding is also calculated by (8) alongside the propagation process in user embedding. 

𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙
(𝑘𝑘+1) = �

1

��Ν𝑖𝑖𝐶𝐶��Ν𝑐𝑐𝐶𝐶�𝑙𝑙𝑙𝑙𝑙𝑙∈Ν𝑖𝑖
𝐶𝐶

𝑒𝑒𝑖𝑖
(𝑘𝑘) 

𝑒𝑒𝑑𝑑
(𝑘𝑘+1) = �

1

��Ν𝑖𝑖𝐷𝐷��Ν𝑑𝑑𝐷𝐷�𝑑𝑑∈Ν𝑖𝑖
𝐷𝐷

𝑒𝑒𝑖𝑖
(𝑘𝑘) 

𝑒𝑒𝑖𝑖𝑖𝑖
(𝑘𝑘+1) = �

1

��Ν𝑖𝑖𝐴𝐴��Ν𝑖𝑖𝐴𝐴�𝑢𝑢∈Ν𝑖𝑖
𝐴𝐴

𝑒𝑒𝑢𝑢
(𝑘𝑘) 

(8) 

 
At the end of iteration, the item embedding is combined by (9), which can be a sum function 

or the application of weights to component embeddings. 
 
 𝑒𝑒𝑖𝑖

(𝑘𝑘+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾 �𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙
(𝑘𝑘+1), 𝑒𝑒𝑑𝑑

(𝑘𝑘+1), 𝑒𝑒𝑖𝑖𝑖𝑖
(𝑘𝑘+1)� (9) 

 
The result embedding of items will be obtained by (10). 
 
 𝑒𝑒𝑖𝑖 = 1

𝐾𝐾
∑ 𝑒𝑒𝑖𝑖

(𝑘𝑘)𝐾𝐾
𝑘𝑘=1  (10) 

3.2.4 Convolution on GNN 
GNN models implemented the message-passing technique by extracting signals from inputs 
and aggregating them into output embeddings [31, 32]. With GCN, output embedding 
continues to propagate through the graph's structure, resulting in collaborative filtering of both 
users and items. 

• Extract signals: the signals propagated from users to users by (11) and items to users 
by (12). 

 𝑚𝑚𝑢𝑢←𝑢𝑢 = 𝑒𝑒𝑢𝑢 + 𝑒𝑒𝑠𝑠 (11) 
 
 𝑚𝑚𝑢𝑢←𝑖𝑖 = 1

�|𝑁𝑁𝑢𝑢||𝑁𝑁𝑖𝑖|
∗ (𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑒𝑒𝑑𝑑) (12) 

 
• Combine signals: all received messages from nearby users of user u are combined to 

refine the user embedding, as in (13). The activation function LeakyReLU adds 
messages encoded with positive and also slightly negative signals [33]. The 
correlation of users is obtained from both collaborative filtering and addition 
information matrices J, D, and S. 

 
 𝑒𝑒𝑢𝑢 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑚𝑚𝑢𝑢←𝑢𝑢 + ∑ 𝑚𝑚𝑢𝑢←𝑖𝑖𝑖𝑖∈𝑁𝑁𝑢𝑢 � (13) 
 

3.2.5 Optimization on the prediction score 
After several propagation iterations, the output embedding vector E∗ will be converged, 

and the prediction score between user ui and location ij can be calculated by (14). 
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 𝑦𝑦𝑢𝑢𝑢𝑢� = 𝑒𝑒𝑢𝑢⊤𝑒𝑒𝑖𝑖 (14) 
 
We proposed a sampling function and prediction method to evaluate precision and recall 

score of our model. The sampling process must include both positive and negative samplers. 
The positive sampler will select locations where the user has previously interacted, whereas 
the negative sampler will select locations where the user has never interacted. In the prediction 
evaluation phase, the set of locations chosen by the positive sampler will be used to evaluate 
precision, whereas the other set of locations chosen by the negative sampler will affect the 
recall. 

Bayesian personalized ranking (BPR) is the best choice for implementing the loss function 
because it is the most effective ranking method for datasets with implicit feedback [34]. We 
use two pooling observable sets: Ω+

ui is observed check-ins and Ω−
uj is unobserved check-ins. 

The loss function has been implemented by (15). 
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ ∑ −Ω𝑢𝑢𝑢𝑢

−Ω𝑢𝑢𝑢𝑢
+ 𝑙𝑙𝑙𝑙σ�𝑦𝑦𝑢𝑢𝑢𝑢� − 𝑦𝑦𝑢𝑢𝑢𝑢� � + λ‖Φ‖22   (15) 

 
where Φ is embedding E∗ and σ(.) is sigmoid function and λ controls the regularization. 

4. Experiments and results 
To validate our surveys and proposed models, we conducted experiments on common site 

datasets. We compared the empirical results to baseline models, such as BPR-MF, NGCF, 
LightGCN, and WiGCN. 

4.1 Datasets description 
We conduct experiments on BrightKite, NYC and Gowalla. Each dataset consists of a file 

of check-in records that include user_id, location_id, and check-in_time; and a friendship 
relation record file, where each record consists of two user_id who are friends on a social 
platform. Some additional files can provide more details on the user or location. We provide 
the statistics of all datasets in Table 3. 

• BrightKite: a location-based social networking service provider that allows users to 
check in and share their locations while also providing ratings and comments. The 
friendship network has over 50 thousand nodes and over 214 thousand edges. It was 
collected via their public API. The network was collected using directed relations, but 
we rebuilt it with undirected edges when there was a friendship in both directions. 
This dataset is available in the SNAP project [35]. 

• NYC: The NYC Open Data is a collection of data sets that provide information about 
different aspects of New York City, such as transportation, education, health, the 
environment, and culture [36]. New York City agencies and other partners publish this 
data, which is freely available to the public. The data can be used to analyze and 
understand the city's operations, as well as to create new applications and services for 
the public. 

• Gowalla: Gowalla is one of several web-based applications that incorporate location-
based social networking [35]. Users can check-in and share public locations with their 
friends. Gowalla's friendship network is represented as an undirected graph. 
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Table 3. Statistical of datasets. 
Dataset Users Locations Check-ins Density Social links 

BrightKite 7,946 26,094 351,184 0.00169 77,660 
NYC 504 3,312 29,665 0.018 unavailable 

Gowalla 23,499 43,043 866,964 0.00086 208,328 
 

4.2 Baseline models 
We use the following state-of-the-art models as base lines to compare with our proposed 

model. 
 

• BPR-MF [34]: A personalized ranking model based on a generic optimization 
criterion, the maximum posterior estimator, derived from a Bayesian problem analysis. 
The model is equipped with a generic optimization learning algorithm that was created 
using stochastic gradient descent and bootstrap sampling. 

• NGCF [15]: This is one of the most effective GCN models. It propagates embeddings 
with multiple iterations to capture high-order connectivity in the interaction graph 
before stacking them on the output. The latent vectors contain the collaborative signal, 
which leads to higher precision. 

• LightGCN [16]: This model focuses on neighborhood aggregation for collaborative 
filtering using NGCF. It removes weight matrices and activation functions. The users’ 
and items’ embeddings for the interaction graph are learned using linear propagation. 
The resulting embedding is the sum of all the learned embeddings. 

• WiGCN [28]: The model uses a weighted matrix in the propagation process to 
strengthen the signals. This matrix represents users' influence on other users by 
calculating the common items between them. This results in more data collection 
propagation and improved recommendation performance. 

4.3 Evaluation criteria 
It is critical to select the appropriate evaluative measure for each algorithm [37]. A common 

evaluation method is to divide a dataset into a train set (typically containing 80 percent of the 
data) and a test set (the remaining 20 percent of the data). The algorithm is then applied to the 
train set to make predictions, which are evaluated on the test set. The difference between the 
actual data value and the predicted result indicates the accuracy of the experimental model's 
algorithm. This error can be represented by Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE). In addition to MAE and RMSE, precision, recall, scalability, learning 
time, memory consumption, and interpretability are important to consider when evaluating the 
recommended system. 

In implicit datasets, user check-ins to locations are recorded in binary format. Algorithms 
use accuracy measures for classification, with precision and recall being the most used metrics 
[38, 39]. Precision is the ratio of correct predictions on the test set, whereas recall is the 
algorithm's sensitivity, or the proportion of relational assertions extracted from the test set. (16) 
is used to calculate precision and recall measurements. 

  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

(16) 
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where:  
• True positive is set of hits predicting check-in exists of users on locations, 
• False positive is set of mispredictions of check-in, 
• False negative presents the number of predicted check-ins not being presented on the 

test set. 
 
Furthermore, the discounted cumulative gain score (DCG)  is a method that labeled each 

result [40]. It accumulates a gain function G applied to the label of each result across the result 
vector, which is scaled by a discount function D based on the result rank. The DCG is then 
normalized by dividing it by the DCG of an ideal result vector, I. This yields the normalized 
discounted cumulative gain (NDGC), as in (17) 

 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁@𝐾𝐾 = 𝐷𝐷𝐷𝐷𝐷𝐷@𝐾𝐾

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼@𝐾𝐾
 (17) 

 
In our experiments, we use precision and recall measurement in (16) and the NDCG score 

in (17) to consider 5 and 10 items, respectively. 

4.4 Overall result comparison  
We have summarized the experimental results in Table 4. Because the NYC dataset lacks 

friendship data, POI-3 returns no results. We divide the table into two parts: Top-5 and Top-
10, with 5 and 10 selected locations for testing, respectively. When matrix information is added, 
the results improve in precision and recall. 
 

Table 4. Overall performance comparisons of LBRS. 
 Dataset 

 
Model 

BrightKite NYC Gowalla 

recall precision ndcg recall precision ndcg recall precision ndcg 

T
op

-5
 lo

ca
tio

ns
 BPR-MF 0.0152 0.0205 0.0261 0.0172 0.0196 0.0234 0.0319 0.0420 0.0487 

NGCF 0.0180 0.0247 0.0309 0.0185 0.0375 0.0387 0.0317 0.0422 0.0493 
LightGCN 0.0204 0.0295 0.0368 0.0204 0.0468 0.0551 0.0325 0.0431 0.0502 
WiGCN 0.0201 0.0285 0.0374 0.0207 0.0436 0.0512 0.0321 0.0439 0.0487 
POI-1 0.0206 0.0294 0.0366 0.0201 0.0468 0.0551 0.0325 0.0442 0.0493 
POI-2 0.0231 0.0315 0.0407 0.0210 0.0480 0.0530 0.0367 0.0451 0.0496 
POI-3 0.0237 0.0341 0.0424 n/a n/a n/a 0.0343 0.0465 0.0502 

T
op

-1
0 

lo
ca

tio
ns

 BPR-MF 0.0217 0.0149 0.0253 0.0110 0.0254 0.0279 0.0414 0.0322 0.0506 
NGCF 0.0218 0.0224 0.0296 0.0210 0.0263 0.0388 0.0411 0.0313 0.0483 
LightGCN 0.0304 0.0218 0.0353 0.0254 0.0294 0.0407 0.0450 0.0338 0.0531 
WiGCN 0.0301 0.0221 0.0363 0.0247 0.2812 0.0401 0.0452 0.0341 0.0544 
POI-1 0.0302 0.0217 0.0394 0.0263 0.0304 0.415 0.0453 0.0344 0.0539 
POI-2 0.0307 0.0221 0.0401 0.0284 0.0334 0.0416 0.0455 0.0348 0.0541 
POI-3 0.0342 0.0245 0.0401 n/a n/a n/a 0.0464 0.0354 0.0549 

4.5 Ablation studies  
We repeat the experiments with different parameters to determine the impact of each 

component on system results. This also helps us explain the machine learning model more 
clearly. 
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4.5.1 The influence of each matrix  
To assess the impact of these factors on the model, we created three variations, which are 

detailed below and summarized in Table 5. 
• POI-1: Based on the collaborative filtering model using GCN, we add to the model 

one of the correlation matrices between locations calculated based on the geographical 
distance information of each pair of locations by Haversine equation (1), or the 
correlation of locations based on CF with Jaccard index (2). 

• POI-2: We incorporate into our proposed model a combination of location correlation 
based on CF results (information from each pair of locations with the same number of 
check-in users) and location correlation by geographical distance. 

• POI-3: We incorporate the social link matrix derived from online social networking 
platforms into our POI-2 model. 

 
Table 5. Overall performance comparisons of LBRS. 

Embedding Check-ins R distance D Jaccard index J Social link S 
LightGCN     

POI-1   max (D, J)  
POI-2     
POI-3     

 

4.5.2 Computational speed 
On e-commerce platforms, the calculation speed of the recommendation model is critical. 

A model must not only have precision and recall, but also converge after a limited number of 
epochs. In previous GCN models, precision and recall will increase gradually because 
iterations take time to propagate through the Laplacian form matrix A. In the model we 
proposed, additional information matrices aided the embeddings in receiving signals and 
rapidly reaching states specific to users and locations. We show the increase in precision and 
recall after the number of epochs of three models: LightGCN, POI-1, and POI-3 (or POI-2 if 
social links are not available) on the NYC dataset in Fig. 5 and the BrightKite dataset in Fig. 
6. 
 

 
Fig. 5. Values of the recall and precision measurement after number of epochs on NYC dataset. 
 

0.019
0.021
0.023
0.025
0.027
0.029
0.031

10 30 50 70 90 11
0

13
0

15
0

recall @10

LightGCN POI-1 POI-2

0.019

0.024

0.029

0.034

0.039

10 30 50 70 90 11
0

13
0

15
0

precision @10

LightGCN POI-1 POI-2



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1883 

 
Fig. 6. Values the recall and precision measurement after number of epochs on BrightKite dataset. 
 

4.5.3 The size of embedding 
We tested our POI-2 model on the NYC dataset with sizes of 32, 64, 96, 128, and 256. The 

accuracy trade-off is the size of the memory used to store the matrices during the calculation. 
We conclude that 64 is an appropriate size for the datasets in this publication. When the 
original matrices are sparse with implicit binary data, the embedding size has little effect on 
experiments with other base line models. In Fig. 7, we show the difference in recall and 
precision values for different embedding sizes. 
 

 
Fig. 7. Value of the recall and precision with several size of embedding  

on POI-3 model with BrightKite dataset. 

4.5.4 Number of layers in GCN 
The advantage of GCN models over GNNs is that they repeat the signal propagation 

process multiple times, which we refer to as the number of layers in the proposed model. The 
weights and embeddings in the model are reused at each iteration, increasing their accuracy. 
However, if repetition occurs too frequently, overfitting can occur, and the model's accuracy 
decreases. We ran tests on the NYC and BrightKite datasets using layer numbers 1, 2, 3, and 
4. Fig. 8 shows the accuracy of each layer for the NYC dataset using three models: NGCF, 
LightGCN, and POI-2. 
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With three layers, the model achieves the highest precision. When there are four layers, 
accuracy tends to decrease. This conclusion is also consistent with the discussion in the 
publication [16] using the model LightGCN. The majority of GCN models in publications use 
3-layer parameters [15, 17, 29]. 

 

 
Fig. 8. Comparison the precision measurement after each propagation iteration on NYC dataset. 

5. Conclusion 
Experimental results show that correlations from both the user and item sides contribute to 

feature embeddings and communicate with one another during the propagation process. 
Furthermore, the proposed model's input information blocks are designed as modules, making 
the model easily customizable and explainable. Mining geographical distances is becoming 
popular in recommendation systems as users move around and use smartphones equipped with 
GPS positioning and continuous tracking. However, the issue of location recommendation 
requires further investigation because, unlike traditional recommendations, the location a user 
wishes to visit is very closely related to the chain of recently visited locations. Instead of 
treating all locations equally, the sequential recommendation system will evaluate the model 
based on the time order in which a user visits each location. The group recommendation 
problem is also difficult because it will provide recommendations to many users when they 
visit as a group of friends. 
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