Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.
무릎 자기공명영상에서 전방십자인대의 분할은 밝기값의 불균일성 및 주변 조직들과의 유사 밝기값 특성으로 인해 기존 분할기법의 적용에 한계가 있다. 본 논문에서는 지역적 정렬을 통한 확률아틀라스 생성 및 반복적 그래프 컷을 통한 다중아틀라스 기반 전방십자인대 분할기법을 제안한다. 첫째, 전역 및 지역적 다중아틀라스 강체정합을 통해 전방십자인대의 확률아틀라스를 생성한다. 둘째, 생성된 확률아틀라스를 이용하여 최대사후추정 및 그래프 컷을 통하여 전방십자인대 초기 분할을 수행한다. 셋째, 마스크 기반 강체정합을 통한 형상정보 개선 및 반복적 그래프 컷을 통해 전방십자인대 분할 개선을 수행한다. 제안방법의 성능평가를 위하여 육안평가 및 정확성평가를 수행하였으며, 평가 결과 제안방법의 Dice 유사도는 75.0%, 평균표면거리는 1.7화소, 제곱근표면거리는 2.7화소로서 기존 그래프 컷 방법에 비하여 전방 십자인대의 분할정확도가 각각 12.8%, 22.7%, 및 22.9% 향상된 것으로 나타났다.
In this paper we consider all orientation-preserving ${\mathbb{Z}}_4$-actions on 3-dimensional handlebodies $V_g$ of genus g > 0. We study the graph of groups (${\Gamma}(v)$, G(v)), which determines a handlebody orbifold $V({\Gamma}(v),G(v)){\simeq}V_g/{\mathbb{Z}}_4$. This algebraic characterization is used to enumerate the total number of ${\mathbb{Z}}_4$ group actions on such handlebodies, up to equivalence.
For a graph G, the variable sum exdeg index SEIa(G) is defined as Σu∈V(G)dG(u)adG(u), where a ∈ (0, 1) ∪ (1, +∞). In this work, we determine the minimum and maximum variable sum exdeg indices (for a > 1) of n-vertex cactus graphs with k cycles or p pendant vertices. Furthermore, the corresponding extremal cactus graphs are characterized.
A radio k-labeling f of a graph G is a function f from V (G) to $Z^+{\cup}\{0\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}k+1$ for every two distinct vertices x and y of G, where d(x, y) is the distance between any two vertices $x,y{\in}G$. The span of a radio k-labeling f is denoted by sp(f) and defined as max$\{{\mid}f(x)-f(y){\mid}:x,y{\in}V(G)\}$. The radio k-labeling is a radio labeling when k = diam(G). In other words, a radio labeling is an injective function $f:V(G){\rightarrow}Z^+{\cup}\{0\}$ such that $${\mid}f(x)=f(y){\mid}{\geq}diam(G)+1-d(x,y)$$ for any pair of vertices $x,y{\in}G$. The radio number of G denoted by rn(G), is the lowest span taken over all radio labelings of the graph. When k = diam(G) - 1, a radio k-labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f:V(G){\rightarrow}\{0,1,2,{\ldots}\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}diam(G)$ holds for all $x,y{\in}G$. The radio antipodal number for G denoted by an(G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs G(4k + 2; {1, 2}).
PURPOSE: This study concerns the wheelchair-based rehabilitation of elderly people, investigating muscle activity and coordination of upper limbs during wheelchair-based new millennium health gymnastics with varying elbow exercise velocity. METHODS: Twelve elderly people participated in new millennium gymnastics twice per week during 12-weeks. The group was separated into 0.4, 1.0, and 1.6 Hz groups (controlled by the metronome speed). Range of motion was measured by electrogoniometer, electromyography signals used root mean square values. The data application was normalized using reference voluntary contraction (%RVC). Upper limb (wrist and elbow joint) data gathered while standing up after the "falling on hips" was investigated in terms of coordination of angle-angle plots. One-way ANOVA, paired t-test and Scheffe's post hoc comparisons, were used for statistical analyses. RESULTS: There were results taken before and after the experiments. The results demonstrated a significant improvement in the triceps brachii and flexor carpi radialis of the 0.4 Hz group (p<.05). There was significant difference in the triceps brachi of the 1 Hz group. No significant differences were found in all muscles of the 1.6 Hz group. Muscle co-activation indexes of the 0.4 Hz group were larger than the others. The 0.4 Hz graph was turning point synchronized clockwise. The 1 Hz graph was out of phase with the negative slope. The 1.6 Hz graph was turning point synchronized counterclockwise, and uncontrolled factor phase was offset on angle-angle plots. CONCLUSION: It is found that improvement of muscle activity and upper limbs coordination of elderly people using wheelchair-based new millennium gymnastics is optimal with elbow exercise velocity with a frequency of 0.4 Hz.
안드로이드 운영체제에서 Flow Analysis의 난독화를 위해서는 실행되지 않는 흐름의 코드를 생성하여 Flow Graph의 크기를 크게 만들어 분석이 어렵게 만들 수 있다. 이를 위해 논문에서는 aar 형태의 라이브러리를 구현하여 외부 라이브러리의 형태로 애플리케이션에 삽입이 가능하도록 하였다. 라이브러리는 더미 코드에서의 진입점에서 부터 최대 5개의 child node를 가질 수 있도록 설계되었으며, child node의 클래스는 각 node마다 100개부터 900개까지 2n+1개의 메서드를 가지고 있으므로 총 2,500개의 진입점으로 구성된다. 또한 진입점은 XML에서 총 150개의 뷰로 구성되며, 각각의 진입점은 비동기 인터페이스를 통해 연결된다. 따라서 Inter-Procedural 기반의 Control Flow Graph를 생성하는 과정에서는 최대 14,175E+11개의 추가적인 경우의 수를 가지게 된다. 이를 애플리케이션에 적용한 결과 Inter Procedural Control Flow Analysis 툴에서 평균 10,931개의 Edge와 3,015개의 Node가 추가 생성되었으며 평균 36.64%의 그래프 크기 증가율을 갖는다. 또한 APK를 분석 시에는 최대 평균 76.33MB의 오버헤드가 발생하였지만, 사용자의 ART 환경에서는 최대 평균 0.88MB의 실행 오버헤드만을 가지며 실행 가능한 것을 확인하였다.
In this paper, Genetic Algorithm (GA) is used to find the Maximum Weight Independent Set (MWIS) of a graph. First, MWIS problem is formulated as a 0-1 integer programming optimization problem with linear objective function and a single quadratic constraint. Then GA is implemented with the help of this formulation. Since GA is a heuristic search method, exact solution is not reached in every run. Though the suboptimal solution obtained is very near to the exact one. Computational result comprising an average performance is also presented here.
It has been established that the role played by complete graphs in graph theory is similar to the role Dowling group geometries and Projective geometries play in matroid theory. In this paper, we introduce a notion of H-tree, a class of representable matroids which play a similar role to trees in graph theory. Then we give some properties of H-trees such that when q = 0, then the results reduce to the known properties of trees in graph theory. Finally we give explicit expressions of the characteristic polynomials of H-trees, H-cycles, H-fans and H-wheels.
Given a graph G=(V,E), Ld(2,1)-labeling of G is a function f : V(G)$\longrightarrow$[0,$\infty$) such that, if v1,v2$\in$V are adjacent, $\mid$ f(x)-f(y) $\mid$$\geq$2d, and, if the distance between and is two, $\mid$ f(x)-f(y) $\mid$$\geq$d, where dG(,v2) is shortest distance between v1 and in G. The L(2,1)-labeling number (G) is the smallest number m such that G has an L(2,1)-labeling f with maximum m of f(v) for v$\in$V. This problem has been studied by Griggs, Yeh and Sakai for the various classes of graphs. In this paper, we discuss the upper-bound of ${\lambda}$ (G) for a chordal graph G and that of ${\lambda}$(G') for a permutation graph G'.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.