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RADIO AND RADIO ANTIPODAL LABELINGS FOR

CIRCULANT GRAPHS G(4k + 2; {1, 2})†

SAIMA NAZEER, IMRANA KOUSAR AND WAQAS NAZEER∗

Abstract. A radio k-labeling f of a graph G is a function f from V (G)
to Z+ ∪{0} such that d(x, y)+ |f(x)− f(y)| ≥ k+1 for every two distinct

vertices x and y of G, where d(x, y) is the distance between any two vertices
x, y ∈ G. The span of a radio k-labeling f is denoted by sp(f) and defined
as max{|f(x)−f(y)| : x, y ∈ V (G)}. The radio k-labeling is a radio labeling

when k = diam(G). In other words, a radio labeling is an injective function
f : V (G) → Z+ ∪ {0} such that

|f(x)− f(y)| ≥ diam(G) + 1− d(x, y)

for any pair of vertices x, y ∈ G. The radio number of G denoted by
rn(G), is the lowest span taken over all radio labelings of the graph. When
k = diam(G) − 1, a radio k- labeling is called a radio antipodal labeling.
An antipodal labeling for a graph G is a function f : V (G) → {0, 1, 2, ...}
such that d(x, y) + |f(x) − f(y)| ≥ diam(G) holds for all x, y ∈ G. The
radio antipodal number for G denoted by an(G), is the minimum span of an
antipodal labeling admitted by G. In this paper, we investigate the exact

value of the radio number and radio antipodal number for the circulant
graphs G(4k + 2; {1, 2}).

AMS Mathematics Subject Classification : 05C12, 05C15, 05C78.
Key words and phrases : diameter, radio number, radio antipodal number,
circulant graphs.

1. Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G) and let k
be an integer, k ≥ 1. A radio k-labeling f of G is an assignment of non negative
integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−d(x, y), where d(x, y)
denotes the distance for every two distinct vertices x and y of G. The span of
the function f is max{|f(x) − f(y)| : x, y ∈ V (G)} and denoted by sp(f). The
radio k-labeling number of G is the smallest span among all radio k-labelings of
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G. Chartrand et al. [1] was the first, who studied the radio k-labeling number
for paths, where lower and upper bounds were given. These bounds have been
improved by Kchikech et al. [7]. The radio k-labeling becomes a radio labeling
for k = diam(G). A radio labeling is a function from the vertices of the graph
to some subset of non negative integers. The task of radio labeling is to assign
to each station a non negative smallest integer such that the disturbance in the
nearest channel should be minimized. In 1980 [5], Hale presented this channel
assignment for the very first time by relating it to the theory of graphs.

Multilevel distance labeling problem was introduced by Chartrand et al. [4]
in 2001. A radio labeling is an injective function f : V (G) → Z+∪{0} satisfying
the condition

|f(x)− f(y)| ≥ diam(G) + 1− d(x, y)

for any pair of vertices x, y in G. Where d(x, y) is the distance between any
distinct pair of vertices in G, which is the length of the shortest path between
them. The largest number that f maps to a vertex of a graph is the span of
labeling f . Radio number ofG is the minimum span taken over all radio labelings
of G and is denoted by rn(G). When k = diam(G) − 1, a radio k- labeling is
referred to as a (radio) antipodal labeling, because only antipodal vertices can
have the same label. The minimum span of an antipodal labeling is called the
antipodal number, denoted by an(G). In [1] and [2], Chartrand et al. were
studied the radio antipodal labeling for path and cycle. In [3], Chartrand et al.
gave general bounds for the antipodal number of a graph. The exact value of the
radio antipodal number of path was found in [9]. Justic and Liu have computed
the radio antipodal number of cycles. In [10], by using a generalization of binary
Gray codes the radio antipodal number and the radio number of the hypercube
are determined.

An undirected circulant graph denoted by G(n;±{1, 2, ..., j}) where 1 ≤ j ≤
⌊n
2 ⌋ and n ≥ 3 is defined as a graph with vertex set V = {0, 1, 2, ...n − 1} and

an edge set E = {(i, j) : |j − i| ≡ s (modn), s ∈ {1, 2, ..., j}}. For the sake of
simplicity, take the vertex set as {v1, v2, ...vn} in clockwise order.

Remark 1.1. The diameter of class of circulant graphs which are going to be
discussed in this paper is:

diam (G(4k + 2; {1, 2}) = d = k + 1.

In this paper, radio and radio antipodal numbers for the class of circulant
graphs G(4k + 2 : {1, 2}) are computed.

2. Main results

The main theorems of this paper are:

Theorem 2.1. The radio number of the circulant graphs G(4k + 2 : {1, 2}) is
given by

rn (G(4k + 2; {1, 2}) =

{
k2 + 5k + 1, if k is odd;

k2 + 4k + 1, if k is even.
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Theorem 2.2. The radio antipodal number of the circulant graphs G(4k +
2; {1, 2}) is given by

an (G(4k + 2; {1, 2}) =

{
k2 + k, if k is odd;

k2 + 2k, if k is even.

3. Radio number for G(4k + 2; {1, 2})

In this section, we prove the Theorem 1 in two steps. First we provide a
lower bound for rn(G(4k + 2; {1, 2})) then define a multilevel distance labeling
of (G(4k + 2; {1, 2})) with span equal to the lower bound, thus determining the
radio number of (G(4k + 2; {1, 2})).

3.1. Lower bound for G(4k + 2; {1, 2}). The lower bound for the radio
number of G(4k + 2; {1, 2}) is determined in following way. First examine the
maximum possible sum of the pairwise distance between any three vertices of
(G(4k + 2; {1, 2})) and use this maximum sum to compute a minimum possible
gap between the ith and (i + 2)nd largest label. Then provides a lower bound
for the span of any labeling by using 0 for the smallest label and considering the
size of gap into account.

Lemma 3.1. For each vertex on the graph G(4k+2; {1, 2}) there is exactly one
vertex at a distance diameter d, of the graph G.

Proof. We show that d(v1, v2k+2) = k + 1 = d. The path from v1 to v2k+2 is of
length k + 1 as v1 → v2(1)+1 → v2(2)+1 → ... → v2(k)+1 → v2(k)+1+1. �

The following Lemma provides a maximum possible sum of the pairwise dis-
tances between any three vertices of G(4k + 2; {1, 2}).

Lemma 3.2. For any three vertices u, v, w on the graphs G(4k + 2; {1, 2}),

d(u, v) + d(v, w) + d(w, u) ≤ 2d.

Proof. By Lemma 3.1, d(v1, v2k+2) = k + 1 = d. Case(i): For odd k.
d(v2k+2, v3k+3) = k+1

2 and a path of length k+1
2 between v2k+2 and v3k+3 is

v2k+1 → v2k+2+1.2 → v2k+2+2.2 → ... → v2k+2+ k+1
2 .2 = v3k+2 and d(v3k+3, v1) =

k+1
2 as v3k+3 → v3k+3+1.2 → v3k+3+2.2 → ... → v3k+3+ k−1

2 .2v4k+2 → v4k+3 = v1.

This implies that d(v1, v2k+2) + d(v2k+2, v3k+3) + d(v3k+3, v1) = k + 1 + k+1
2 +

k+1
2 = 2(k + 1) = 2d.

Case (ii): For even k.
d(v2k+2, v3k+3) =

k
2 + 1 and a path of length k

2 + 1 between v2k+2 and v3k+3 is
v2k+1 → v2k+2+1.2 → v2k+2+2.2 → ... → v2k+2+ k

2 .2
→ v2k+2+ k

2+1 = v3k+2. Also,

d(v3k+3, v1) =
k
2 because v3k+3 → v3k+3+1.2 → v3k+3+2.2 → ... → v3k+3+ k

2 .2
=

v4k+3 = v1. Thus, d(v1, v2k+2) + d(v2k+2, v3k+3) + d(v3k+3, v1) = k + 1 + k
2 +
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1 + k
2 = 2(k + 1) = 2d. Therefore, for any three vertices u, v, w on the graphs

G(4k + 2; {1, 2}),
d(u, v) + d(v, w) + d(w, u) ≤ 2d.

�
The minimum distance between every other label (arranged in increasing

order) in a multi-level distance labeling (or radio labeling) of G(4k + 2; {1, 2})
is determined by using this maximum possible sum of the pairwise distances
between any three vertices of G(4k+2; {1, 2}) together with the radio condition.

Lemma 3.3. Let f be radio labeling for V (G(4k + 2; {1, 2})), where {xi : 1 ≤
i ≤ 4k+2} be the ordering of V (G(4k+2; {1, 2})) such that f(xi) < f(xi+1) for
all 1 ≤ i ≤ 4k + 1, then

f(xi+2)− f(xi) = fi + fi+1 ≥


k + 4

2
, if k is even;

k + 5

2
, if k is odd.

Proof. By definition,

f(xi+1)− f(xi) ≥ d+ 1− d(xi+1, xi),

f(xi+2)− f(xi+1) ≥ d+ 1− d(xi+2, xi+1),

f(xi+2)− f(xi) ≥ d+ 1− d(xi+2, xi).

Summing these inequalities yields

2(f(xi+2)− f(xi)) ≥ 3d+ 3− [d(xi, xi+1) + d(xi+1, xi+2) + d(xi, xi+2)].

Furthermore, by Lemma 4, d(u, v) + d(v, w) + d(w, u) ≤ 2d, so we have

2(f(xi+2)− f(xi)) ≥ 3d+ 3− 2d = d+ 3.

As d = diam(G(4k + 2; {1, 2})) = k + 1, it follows that

(f(xi+2)− f(xi)) ≥
d+ 3

2
=

k + 4

2
.

Thus

f(xi+2)− f(xi) = fi + fi+1 ≥


k + 4

2
, if k is even;

k + 5

2
, if k is odd.

�
The above Lemma makes it possible to calculate the minimum possible span

of a radio labeling of G(4k + 2; {1, 2}).

Theorem 3.4. The radio number of the circulant graphs G(4k + 2; {1, 2}) sat-
isfies

rn (G(4k + 2; {1, 2}) ≥

{
k2 + 5k + 1, if k is odd;

k2 + 4k + 1, if k is even.
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Proof. Let f be a distance labeling for G(4k+2; {1, 2}) and {x1, x2, x3, ..., x4k+2}
be the ordering of vertices of G(4k+2; {1, 2}), such that f(xi) < f(xi+1) defined
by f(x1) = 0 and, set di = d(xi, xi+1) and fi = f(xi+1) − f(xi). Then fi ≥
d+1−di for all i. By Lemma 5, the span of a distance labeling forG(4k+2; {1, 2})
is

f(x4k+2) =
4k+1∑
i=1

fi = f1 + f2 + f3 + ....+ f4k + f4k+1

= [f(x2)− f(x1)] + [f(x3)− f(x2)] + ...+ [f(x4k+1)− f(x4k)]

+ [f(x4k+2)− f(x4k+1)]

= (f1 + f2) + (f3 + f4) + (f5 + f6) + ...+ (f4k−1 + f4k) + f4k+1

=

4k
2∑

i=1

(f2i−1 + f2i) + f4k+1

Thus,

f(x4k+2) ≥


4k

2

(
k + 5

2

)
+ 1, if k is odd;

4k

2

(
k + 4

2

)
+ 1, if k is even.

f(x4k+2) ≥

{
k2 + 5k + 1, if k is odd;

k2 + 4k + 1, if k is even.

�
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Figure 1. Radio labeling and ordinary labeling of G(6; {1, 2})

3.2. Upper bound for rnG(4k+2; {1, 2}). To complete the proof of Theorem
1, we find upper bound and show that this upper bound is equal to the lower
bound for G(4k + 2; {1, 2}). The labeling is generated by three sequences, the
distance gap sequence

D = (d1, d2, d3, ...., d4k+1),

the color gap sequence

F = (f1, f2, f3, ...., f4k+1),
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and the vertex gap sequence T

T = (t1, t2, t3, ...., t4k+1).

For odd k. The distance gap sequence is given by:

di =


k + 1, if i is odd;

k + 1

2
, if i is even.

The color gap sequence F is given by:

fi =


1, if i is odd;

k + 3

2
, if i is even.

For even k. The distance gap sequence is given by:

di =


k + 1, if i is odd;

k

2
+ 1, if i is even.

The color gap sequence F is given by:

fi =


1, if i is odd;

k + 2

2
, if i is even.

The vertex gap sequence for all values of k is:

ti =

{
2k, if i is odd;

k, if i ≡ 0(mod4).

Where ti denotes number of vertices between xi and xi+1.
Let π : {1, 2, 3, ..., 4k + 2} → {1, 2, 3, ..., 4k + 2} be defined by π(1) = 1 and

π(i+ 1) = π(i) + ti + 1 (mod 4k + 2)

Let xi = uπ(i) for i = 1, 2, 3, ..., 4k + 2. Then x1, x2, x3, ..., x4k+2 is an ordering
of the vertices of G, assuming f(x1) = 0, f(xi+1) = f(xi) + fi. Then for
i = 1, 2, 3, ..., 2k + 2,

π(2i) = (3i− 1)k + 2i (mod 4k + 2),

and for i = 1, 2, ...2k + 2,

π(2i+ 1) = 3(i− 1)k + 2i− 1 (mod 4k + 2).

We will show that each of the sequences given above, the corresponding π are
permutations. For odd k, g.c.d.(4k + 2, k) = 1 and 3k + 2 ≡ −k (mod 4k + 2)
implies that (3k + 2)(i − i′) ≡ k(i′ − i) ̸≡ 0 (mod 4k + 2). Because if it does so
then k(i′ − i) ≡ k.0 (mod 4k+2) and i′ − i ≡ 0 (mod 4k+2) which is impossible
when 0 < i − i′ < 4k+2

2 . Therefore π(2i − 1) ̸= π(2i′ − 1), if i ̸= i′. Similarly
π(2i) ̸= π(2i′), if i ̸= i′. If π(2i) = π(2i′ − 1), then we get

(3i− 1)k + 2i = 3(i′ − 1)k + 2i′ − 1,
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(i− i′)(3k + 2) = −2k − 1 ≡ 2k + 1 (mod 4k + 2),

2(i′ − i)k ≡ 0 (mod 4k + 2).

As k is odd and g.c.d.(4k+2, k) = 1 it follows that i′ − i ≡ 0 (mod 4k+2). This
implies that 4k + 2 divides i′ − i < 2k + 1, which is not possible.
When k is odd, then span of f is equal to:

f1 + f2 + f3+, ..., f4k + f4k+1

= [(f1 + f3 + f5+, ...,+f4k+1)] + [(f2 + f4 + f6+, ...,+f4k)]

=
4k + 2

2
(1) +

4k + 2− 2

2

(
k + 3

2

)
= k2 + 5k + 1.

For even k, g.c.d.(4k + 2, k) = 2 and 3k + 2 ≡ −k (mod 4k + 2) implies that
(3k+2)(i− i′) ≡ k(i′− i) ̸≡ 0 (mod 4k+2). Because if it does so then k(i′− i) ≡
k.0 (mod 4k+2) and i′− i ≡ 0 (mod 4k+2

2 ) which is impossible when 0 < i− i′ <
4k+2

2 . Therefore π(2i − 1) ̸= π(2i′ − 1), if i ̸= i′. Similarly π(2i) ̸= π(2i′), if
i ̸= i′. If π(2i) = π(2i′ − 1), then

(3i− 1)k + 2i = 3(i′ − 1)k + 2i′ − 1,

(i− i′)(3k + 2) = −2k − 1 ≡ 2k + 1 (mod 4k + 2),

2(i′ − i)k ≡ 0 (mod 4k + 2).

As k is even and g.c.d.(4k+2, k) = 2 it follows that i′− i ≡ 0 (mod 4k+2
2 ). Which

is not possible.
When k is even, then span of f is equal to:

f1 + f2 + f3+, ..., f4k + f4k+1

= [(f1 + f3 + f5+, ...,+f4k+1)] + [(f2 + f4 + f6+, ...,+f4k)]

=
4k + 2

2
(1) +

4k + 2− 2

2

(
k + 2

2

)
= k2 + 4k + 1.
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Figure 2. Radio labeling and ordinary labeling of G(10; {1, 2})
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4. Radio antipodal number for G(4k + 2; {1, 2})

In this section, the lower and upper bound for the radio antipodal number
are determined and have shown that these bounds are equal.

4.1. Lower bound for an(G(4k + 2; {1, 2}). The technique for finding the
lower bound for an(G(4k+2; {1, 2}) is analogous to that of rn(G(4k+2; {1, 2}).

Lemma 4.1. Let f be radio antipodal labeling for V (G(4k + 2; {1, 2})), where
{xi : 1 ≤ i ≤ 4k + 2} be the ordering of V (G(4k + 2; {1, 2})) such that f(xi) ≤
f(xi+1) for all 1 ≤ i ≤ 4k + 1, then

f(xi+2)− f(xi) = fi + fi+1 ≥


k + 2

2
, if k is even;

k + 1

2
, if k is odd.

Proof. By definition, f(xi+1) − f(xi) ≥ d − d(xi+1, xi), f(xi+2) − f(xi+1) ≥
d−d(xi+2, xi+1) and f(xi+2)−f(xi) ≥ d−d(xi+2, xi). Summing up these three
in-equalities and by Lemma 4, we get

2(f(xi+2)− f(xi)) ≥ 3d− [d(xi, xi+1) + d(xi+1, xi+2) + d(xi, xi+2)]

2(f(xi+2)− f(xi)) ≥ 3d− 2d = d

(f(xi+2)− f(xi)) ≥
d

2
=

k + 1

2

Thus,

f(xi+2)− f(xi) = fi + fi+1 ≥


k + 2

2
, if k is even;

k + 1

2
, if k is odd.

�

Theorem 4.2. The radio antipodal number of the circulant graphs G(4k +
2; {1, 2}) is given by

rn(G(4k + 2; {1, 2}) ≥

{
k2 + k, if k is odd;

k2 + 2k, if k is even.

Proof. Let f be a distance labeling for G(4k+2; {1, 2}) and {x1, x2, x3, ..., x4k+2}
be the ordering of vertices of G(4k+2; {1, 2}), such that f(xi) ≤ f(xi+1) defined
by f(x1) = 0 and, set di = d(xi, xi+1) and fi = f(xi+1)−f(xi). Then fi ≥ d−di
for all i. By Lemma 7, the span of a distance labeling for G(4k + 2; {1, 2}) is

f(x4k+2) =
n−1∑
i=1

fi = f1 + f2 + f3 + ....+ f4k + f4k+1

= [f(x2)− f(x1)] + [f(x3)− f(x2)] + ...+ [f(x4k+1)− f(x4k)]

+ [f(x4k+2)− f(x4k+1)]
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= (f1 + f2) + (f3 + f4) + (f5 + f6) + ...+ (f4k−1 + f4k) + f4k+1

=

4k
2∑

i=1

(f2i−1 + f2i) + f4k+1

Thus,

f(x4k+2) ≥


4k

2

(
k + 1

2

)
+ 0, if k is odd;

4k

2

(
k + 2

2

)
+ 0, if k is even.

⇒ f(x4k+2) ≥

{
k2 + k, if k is odd;

k2 + 2k, if k is even.
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Figure 3. Radio antipodal labeling and ordinary labeling of G(6; {1, 2})

4.2. Upper bound for an(G(4k+2; {1, 2}). To complete the proof of Theorem
2, we find upper bound and show that this upper bound is same as the lower
bound for an(G(4k+2; {1, 2})). The technique for an upper bound of an(G(4k+
2; {1, 2}) is analogous to that of rn(G(4k + 2; {1, 2}), with replacing the color
gap sequence.
For odd k. The color gap sequence F is given by:

fi =


0, if i is odd;

k + 1

2
, if i is even.

For even k. The color gap sequence F is given by:

fi =


0, if i is odd;

k + 2

2
, if i is even.

When k is odd, then span of f is equal to:

f1 + f2 + f3+, ..., f4k + f4k+1

= [(f1 + f3 + f5+, ...,+f4k+1)] + [(f2 + f4 + f6+, ...,+f4k)]

=
4k + 2

2
(0) +

4k + 2− 2

2

(
k + 1

2

)
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= k2 + k.

When k is even, then span of f is equal to:

f1 + f2 + f3+, ..., f4k + f4k+1

= [(f1 + f3 + f5+, ...,+f4k+1)] + [(f2 + f4 + f6+, ...,+f4k)]

=
4k + 2

2
(0) +

4k + 2− 2

2

(
k + 2

2

)
= k2 + 2k.
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Figure 4. Radio antipodal labeling and ordinary labeling of G(10; {1, 2})

References

1. G. Chartrand, L. Nebesk’y and P. Zhang, Radio k-colorings of paths, Discussiones Mathe-
maticae Graph Theory, 24 (2004), 5-21.

2. G. Chartrand, D. Erwin, and P. Zhang, Radio antipodal colourings of cycles, Congressus
Numerantium, 144 (2000), 129-141.

3. G. Chartrand, D. Erwin, and P. Zhang, Radio antipodal colourings of graphs, Math. Bo-
hemica, 127 (2002), 57-69.

4. G. Chartrand, D. Erwin, and P. Zhang, and F. Harary, Radio labelings of grphs, Bull. Inst.
Combin. appl., 33 (2001), 77-85.

5. W.K. Hale, Frequency assignment: theory and application, Proc IEEE, 68 (1980), 1497-
1514.

6. J.S. Juan and D.F. Liu, Antipodal labelings for cycles, Dec. 12, 2006 (Manuscript).
7. M. Kchikech, R. Khenoufa and O. Togni, Linear and cyclic radio k-labelings of trees,

Discussiones Mathematicae Graph Theory, 27 (2007), 105-123.
8. M. Kchikech, R. Khenoufa and O. Togni, Radio k-labelings for cartesian products of graphs,

Discussion Mathematicae Graph Theory.
9. R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohemica,

130 (2005), 277-282.

10. R. Khennoufa and O. Togni, The radio antipodal and radio numbers of the hypercube, Ars
Combinatoria, 102 (2011), 447-461.

11. D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Disc.
Math., 19 (2005), 610-621.



Radio and Radio Antipodal Labelings For Circulant Graphs G(4k + 2; {1, 2}) 183

12. D. Liu and M. Xie, Radio number for square cycles, Congr. Numerantium, 169 (2004),
105-125.

Saima Nazeer received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D.
at University of the Punjab, Lahore-Pakistan. She is currently assistant Professor at Lahore

College for Women University, Lahore-Pakistan. Her research area is graph theory.

Department of Mathematics, Lahore College for Women University, Lahore-Pakistan.

e-mail: saimanazeer123@yahoo.com

Imrana Kousar received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D.

from University of the Punjab, Lahore-Pakistan,. She is currently assistant Professor at
Lahore College for Women University, Lahore-Pakistan. Her research area is graph theory.

Department of Mathematics, Lahore College for Women University, Lahore-Pakistan.
e-mail: imrana.kousar@hotmail.com

Waqas Nazeer received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D.
from Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan. He
is currently assistant Professor at University of Education Township Lahore. His research

interests are functional analysis and graph theory.

Department of Mathematics, University of Education Township Lahore, Lahore-Pakistan.
e-mail: waqaster@yahoo.com


