RADIO AND RADIO ANTIPODAL LABELINGS FOR CIRCULANT GRAPHS $G(4 k+2 ;\{1,2\})^{\dagger}$

SAIMA NAZEER, IMRANA KOUSAR AND WAQAS NAZEER*

Abstract

A radio k-labeling f of a graph G is a function f from $V(G)$ to $Z^{+} \cup\{0\}$ such that $d(x, y)+|f(x)-f(y)| \geq k+1$ for every two distinct vertices x and y of G, where $d(x, y)$ is the distance between any two vertices $x, y \in G$. The span of a radio k-labeling f is denoted by $s p(f)$ and defined as $\max \{|f(x)-f(y)|: x, y \in V(G)\}$. The radio k-labeling is a radio labeling when $k=\operatorname{diam}(G)$. In other words, a radio labeling is an injective function $f: V(G) \rightarrow Z^{+} \cup\{0\}$ such that $$
|f(x)-f(y)| \geq \operatorname{diam}(G)+1-d(x, y)
$$ for any pair of vertices $x, y \in G$. The radio number of G denoted by $\operatorname{rn}(G)$, is the lowest span taken over all radio labelings of the graph. When $k=\operatorname{diam}(G)-1$, a radio k - labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f: V(G) \rightarrow\{0,1,2, \ldots\}$ such that $d(x, y)+|f(x)-f(y)| \geq \operatorname{diam}(G)$ holds for all $x, y \in G$. The radio antipodal number for G denoted by an (G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs $G(4 k+2 ;\{1,2\})$.

AMS Mathematics Subject Classification : 05C12, 05C15, 05 C 78. Key words and phrases : diameter, radio number, radio antipodal number, circulant graphs.

1. Introduction

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$ and let k be an integer, $k \geq 1$. A radio k-labeling f of G is an assignment of non negative integers to the vertices of G such that $|f(x)-f(y)| \geq k+1-d(x, y)$, where $d(x, y)$ denotes the distance for every two distinct vertices x and y of G. The span of the function f is $\max \{|f(x)-f(y)|: x, y \in V(G)\}$ and denoted by $\operatorname{sp}(f)$. The radio k-labeling number of G is the smallest span among all radio k-labelings of

[^0]G. Chartrand et al. [1] was the first, who studied the radio k-labeling number for paths, where lower and upper bounds were given. These bounds have been improved by Kchikech et al. [7]. The radio k-labeling becomes a radio labeling for $k=\operatorname{diam}(G)$. A radio labeling is a function from the vertices of the graph to some subset of non negative integers. The task of radio labeling is to assign to each station a non negative smallest integer such that the disturbance in the nearest channel should be minimized. In 1980 [5], Hale presented this channel assignment for the very first time by relating it to the theory of graphs.

Multilevel distance labeling problem was introduced by Chartrand et al. [4] in 2001. A radio labeling is an injective function $f: V(G) \rightarrow Z^{+} \cup\{0\}$ satisfying the condition

$$
|f(x)-f(y)| \geq \operatorname{diam}(G)+1-d(x, y)
$$

for any pair of vertices x, y in G. Where $d(x, y)$ is the distance between any distinct pair of vertices in G, which is the length of the shortest path between them. The largest number that f maps to a vertex of a graph is the span of labeling f. Radio number of G is the minimum span taken over all radio labelings of G and is denoted by $\operatorname{rn}(G)$. When $k=\operatorname{diam}(G)-1$, a radio k - labeling is referred to as a (radio) antipodal labeling, because only antipodal vertices can have the same label. The minimum span of an antipodal labeling is called the antipodal number, denoted by $\mathrm{an}(G)$. In [1] and [2], Chartrand et al. were studied the radio antipodal labeling for path and cycle. In [3], Chartrand et al. gave general bounds for the antipodal number of a graph. The exact value of the radio antipodal number of path was found in [9]. Justic and Liu have computed the radio antipodal number of cycles. In [10], by using a generalization of binary Gray codes the radio antipodal number and the radio number of the hypercube are determined.

An undirected circulant graph denoted by $G(n ; \pm\{1,2, \ldots, j\})$ where $1 \leq j \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$ and $n \geq 3$ is defined as a graph with vertex set $V=\{0,1,2, \ldots n-1\}$ and an edge set $E=\{(i, j):|j-i| \equiv s(\bmod n), s \in\{1,2, \ldots, j\}\}$. For the sake of simplicity, take the vertex set as $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ in clockwise order.

Remark 1.1. The diameter of class of circulant graphs which are going to be discussed in this paper is:

$$
\operatorname{diam}(G(4 k+2 ;\{1,2\})=d=k+1
$$

In this paper, radio and radio antipodal numbers for the class of circulant graphs $G(4 k+2:\{1,2\})$ are computed.

2. Main results

The main theorems of this paper are:
Theorem 2.1. The radio number of the circulant graphs $G(4 k+2:\{1,2\})$ is given by

$$
r n\left(G(4 k+2 ;\{1,2\})= \begin{cases}k^{2}+5 k+1, & \text { if } k \text { is odd } \\ k^{2}+4 k+1, & \text { if } k \text { is even } .\end{cases}\right.
$$

Theorem 2.2. The radio antipodal number of the circulant graphs $G(4 k+$ $2 ;\{1,2\}$) is given by

$$
\text { an }\left(G(4 k+2 ;\{1,2\})= \begin{cases}k^{2}+k, & \text { if } k \text { is odd } \\ k^{2}+2 k, & \text { if } k \text { is even } .\end{cases}\right.
$$

3. Radio number for $G(4 k+2 ;\{1,2\})$

In this section, we prove the Theorem 1 in two steps. First we provide a lower bound for $\operatorname{rn}(G(4 k+2 ;\{1,2\}))$ then define a multilevel distance labeling of $(G(4 k+2 ;\{1,2\}))$ with span equal to the lower bound, thus determining the radio number of $(G(4 k+2 ;\{1,2\}))$.
3.1. Lower bound for $G(4 k+2 ;\{1,2\})$. The lower bound for the radio number of $G(4 k+2 ;\{1,2\})$ is determined in following way. First examine the maximum possible sum of the pairwise distance between any three vertices of $(G(4 k+2 ;\{1,2\}))$ and use this maximum sum to compute a minimum possible gap between the $i^{\text {th }}$ and $(i+2)^{n d}$ largest label. Then provides a lower bound for the span of any labeling by using 0 for the smallest label and considering the size of gap into account.

Lemma 3.1. For each vertex on the graph $G(4 k+2 ;\{1,2\})$ there is exactly one vertex at a distance diameter d, of the graph G.

Proof. We show that $d\left(v_{1}, v_{2 k+2}\right)=k+1=d$. The path from v_{1} to $v_{2 k+2}$ is of length $k+1$ as $v_{1} \rightarrow v_{2(1)+1} \rightarrow v_{2(2)+1} \rightarrow \ldots \rightarrow v_{2(k)+1} \rightarrow v_{2(k)+1+1}$.

The following Lemma provides a maximum possible sum of the pairwise distances between any three vertices of $G(4 k+2 ;\{1,2\})$.

Lemma 3.2. For any three vertices u, v, w on the graphs $G(4 k+2 ;\{1,2\})$,

$$
d(u, v)+d(v, w)+d(w, u) \leq 2 d
$$

Proof. By Lemma 3.1, $d\left(v_{1}, v_{2 k+2}\right)=k+1=d$. Case(i): For odd k.
$d\left(v_{2 k+2}, v_{3 k+3}\right)=\frac{k+1}{2}$ and a path of length $\frac{k+1}{2}$ between $v_{2 k+2}$ and $v_{3 k+3}$ is $v_{2 k+1} \rightarrow v_{2 k+2+1.2} \rightarrow v_{2 k+2+2.2} \rightarrow \ldots \rightarrow v_{2 k+2+\frac{k+1}{2} .2}=v_{3 k+2}$ and $d\left(v_{3 k+3}, v_{1}\right)=$ $\frac{k+1}{2}$ as $v_{3 k+3} \rightarrow v_{3 k+3+1.2} \rightarrow v_{3 k+3+2.2} \rightarrow \ldots \rightarrow v_{3 k+3+\frac{k-1}{2} .2} v_{4 k+2} \rightarrow v_{4 k+3}=v_{1}$. This implies that $d\left(v_{1}, v_{2 k+2}\right)+d\left(v_{2 k+2}, v_{3 k+3}\right)+d\left(v_{3 k+3}, v_{1}\right)=k+1+\frac{k+1}{2}+$ $\frac{k+1}{2}=2(k+1)=2 d$.
Case (ii): For even k.
$d\left(v_{2 k+2}, v_{3 k+3}\right)=\frac{k}{2}+1$ and a path of length $\frac{k}{2}+1$ between $v_{2 k+2}$ and $v_{3 k+3}$ is $v_{2 k+1} \rightarrow v_{2 k+2+1.2} \rightarrow v_{2 k+2+2.2} \rightarrow \ldots \rightarrow v_{2 k+2+\frac{k}{2} .2} \rightarrow v_{2 k+2+\frac{k}{2}+1}=v_{3 k+2}$. Also, $d\left(v_{3 k+3}, v_{1}\right)=\frac{k}{2}$ because $v_{3 k+3} \rightarrow v_{3 k+3+1.2} \rightarrow v_{3 k+3+2.2} \rightarrow \ldots \rightarrow v_{3 k+3+\frac{k}{2} .2}=$ $v_{4 k+3}=v_{1}$. Thus, $d\left(v_{1}, v_{2 k+2}\right)+d\left(v_{2 k+2}, v_{3 k+3}\right)+d\left(v_{3 k+3}, v_{1}\right)=k+1+\frac{k}{2}+$
$1+\frac{k}{2}=2(k+1)=2 d$. Therefore, for any three vertices u, v, w on the graphs $G(4 k+2 ;\{1,2\})$,

$$
d(u, v)+d(v, w)+d(w, u) \leq 2 d
$$

The minimum distance between every other label (arranged in increasing order) in a multi-level distance labeling (or radio labeling) of $G(4 k+2 ;\{1,2\})$ is determined by using this maximum possible sum of the pairwise distances between any three vertices of $G(4 k+2 ;\{1,2\})$ together with the radio condition.

Lemma 3.3. Let f be radio labeling for $V(G(4 k+2 ;\{1,2\}))$, where $\left\{x_{i}: 1 \leq\right.$ $i \leq 4 k+2\}$ be the ordering of $V(G(4 k+2 ;\{1,2\}))$ such that $f\left(x_{i}\right)<f\left(x_{i+1}\right)$ for all $1 \leq i \leq 4 k+1$, then

$$
f\left(x_{i+2}\right)-f\left(x_{i}\right)=f_{i}+f_{i+1} \geq \begin{cases}\frac{k+4}{2}, & \text { if } k \text { is even } \\ \frac{k+5}{2}, & \text { if } k \text { is odd }\end{cases}
$$

Proof. By definition,

$$
\begin{aligned}
f\left(x_{i+1}\right)-f\left(x_{i}\right) & \geq d+1-d\left(x_{i+1}, x_{i}\right), \\
f\left(x_{i+2}\right)-f\left(x_{i+1}\right) & \geq d+1-d\left(x_{i+2}, x_{i+1}\right), \\
f\left(x_{i+2}\right)-f\left(x_{i}\right) & \geq d+1-d\left(x_{i+2}, x_{i}\right) .
\end{aligned}
$$

Summing these inequalities yields

$$
2\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) \geq 3 d+3-\left[d\left(x_{i}, x_{i+1}\right)+d\left(x_{i+1}, x_{i+2}\right)+d\left(x_{i}, x_{i+2}\right)\right]
$$

Furthermore, by Lemma $4, d(u, v)+d(v, w)+d(w, u) \leq 2 d$, so we have

$$
2\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) \geq 3 d+3-2 d=d+3
$$

As $d=\operatorname{diam}(G(4 k+2 ;\{1,2\}))=k+1$, it follows that

$$
\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) \geq \frac{d+3}{2}=\frac{k+4}{2}
$$

Thus

$$
f\left(x_{i+2}\right)-f\left(x_{i}\right)=f_{i}+f_{i+1} \geq \begin{cases}\frac{k+4}{2}, & \text { if } k \text { is even } \\ \frac{k+5}{2}, & \text { if } k \text { is odd }\end{cases}
$$

The above Lemma makes it possible to calculate the minimum possible span of a radio labeling of $G(4 k+2 ;\{1,2\})$.
Theorem 3.4. The radio number of the circulant graphs $G(4 k+2 ;\{1,2\})$ satisfies

$$
r n\left(G(4 k+2 ;\{1,2\}) \geq \begin{cases}k^{2}+5 k+1, & \text { if } k \text { is odd } \\ k^{2}+4 k+1, & \text { if } k \text { is even }\end{cases}\right.
$$

Proof. Let f be a distance labeling for $G(4 k+2 ;\{1,2\})$ and $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{4 k+2}\right\}$ be the ordering of vertices of $G(4 k+2 ;\{1,2\})$, such that $f\left(x_{i}\right)<f\left(x_{i+1}\right)$ defined by $f\left(x_{1}\right)=0$ and, set $d_{i}=d\left(x_{i}, x_{i+1}\right)$ and $f_{i}=f\left(x_{i+1}\right)-f\left(x_{i}\right)$. Then $f_{i} \geq$ $d+1-d_{i}$ for all i. By Lemma 5 , the span of a distance labeling for $G(4 k+2 ;\{1,2\})$ is

$$
\begin{aligned}
f\left(x_{4 k+2}\right)= & \sum_{i=1}^{4 k+1} f_{i}=f_{1}+f_{2}+f_{3}+\ldots .+f_{4 k}+f_{4 k+1} \\
= & {\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]+\left[f\left(x_{3}\right)-f\left(x_{2}\right)\right]+\ldots+\left[f\left(x_{4 k+1}\right)-f\left(x_{4 k}\right)\right] } \\
& +\left[f\left(x_{4 k+2}\right)-f\left(x_{4 k+1}\right)\right] \\
= & \left(f_{1}+f_{2}\right)+\left(f_{3}+f_{4}\right)+\left(f_{5}+f_{6}\right)+\ldots+\left(f_{4 k-1}+f_{4 k}\right)+f_{4 k+1} \\
= & \sum_{i=1}^{\frac{4 k}{2}}\left(f_{2 i-1}+f_{2 i}\right)+f_{4 k+1}
\end{aligned}
$$

Thus,

$$
\begin{gathered}
f\left(x_{4 k+2}\right) \geq\left\{\begin{array}{l}
\frac{4 k}{2}\left(\frac{k+5}{2}\right)+1, \text { if } k \text { is odd } \\
\frac{4 k}{2}\left(\frac{k+4}{2}\right)+1, \text { if } k \text { is even. }
\end{array}\right. \\
f\left(x_{4 k+2}\right) \geq\left\{\begin{array}{l}
k^{2}+5 k+1, \text { if } k \text { is odd } \\
k^{2}+4 k+1, \text { if } k \text { is even. }
\end{array}\right.
\end{gathered}
$$

Figure 1. Radio labeling and ordinary labeling of $G(6 ;\{1,2\})$
3.2. Upper bound for $\operatorname{rn} G(4 k+2 ;\{1,2\})$. To complete the proof of Theorem 1 , we find upper bound and show that this upper bound is equal to the lower bound for $G(4 k+2 ;\{1,2\})$. The labeling is generated by three sequences, the distance gap sequence

$$
D=\left(d_{1}, d_{2}, d_{3}, \ldots ., d_{4 k+1}\right)
$$

the color gap sequence

$$
F=\left(f_{1}, f_{2}, f_{3}, \ldots ., f_{4 k+1}\right)
$$

and the vertex gap sequence T

$$
T=\left(t_{1}, t_{2}, t_{3}, \ldots ., t_{4 k+1}\right)
$$

For odd k. The distance gap sequence is given by:

$$
d_{i}= \begin{cases}k+1, & \text { if } i \text { is odd } \\ \frac{k+1}{2}, & \text { if } i \text { is even }\end{cases}
$$

The color gap sequence F is given by:

$$
f_{i}=\left\{\begin{array}{cl}
1, & \text { if } i \text { is odd; } \\
\frac{k+3}{2}, & \text { if } i \text { is even }
\end{array}\right.
$$

For even k. The distance gap sequence is given by:

$$
d_{i}= \begin{cases}k+1, & \text { if } i \text { is odd } \\ \frac{k}{2}+1, & \text { if } i \text { is even }\end{cases}
$$

The color gap sequence F is given by:

$$
f_{i}=\left\{\begin{array}{cl}
1, & \text { if } i \text { is odd; } \\
\frac{k+2}{2}, & \text { if } i \text { is even }
\end{array}\right.
$$

The vertex gap sequence for all values of k is:

$$
t_{i}= \begin{cases}2 k, & \text { if } i \text { is odd } \\ k, & \text { if } i \equiv 0(\bmod 4)\end{cases}
$$

Where t_{i} denotes number of vertices between x_{i} and x_{i+1}.
Let $\pi:\{1,2,3, \ldots, 4 k+2\} \rightarrow\{1,2,3, \ldots, 4 k+2\}$ be defined by $\pi(1)=1$ and

$$
\pi(i+1)=\pi(i)+t_{i}+1(\bmod 4 k+2)
$$

Let $x_{i}=u_{\pi(i)}$ for $i=1,2,3, \ldots, 4 k+2$. Then $x_{1}, x_{2}, x_{3}, \ldots, x_{4 k+2}$ is an ordering of the vertices of G, assuming $f\left(x_{1}\right)=0, f\left(x_{i+1}\right)=f\left(x_{i}\right)+f_{i}$. Then for $i=1,2,3, \ldots, 2 k+2$,

$$
\pi(2 i)=(3 i-1) k+2 i(\bmod 4 k+2)
$$

and for $i=1,2, \ldots 2 k+2$,

$$
\pi(2 i+1)=3(i-1) k+2 i-1(\bmod 4 k+2) .
$$

We will show that each of the sequences given above, the corresponding π are permutations. For odd k, g.c.d. $(4 k+2, k)=1$ and $3 k+2 \equiv-k(\bmod 4 k+2)$ implies that $(3 k+2)\left(i-i^{\prime}\right) \equiv k\left(i^{\prime}-i\right) \not \equiv 0(\bmod 4 k+2)$. Because if it does so then $k\left(i^{\prime}-i\right) \equiv k .0(\bmod 4 k+2)$ and $i^{\prime}-i \equiv 0(\bmod 4 k+2)$ which is impossible when $0<i-i^{\prime}<\frac{4 k+2}{2}$. Therefore $\pi(2 i-1) \neq \pi\left(2 i^{\prime}-1\right)$, if $i \neq i^{\prime}$. Similarly $\pi(2 i) \neq \pi\left(2 i^{\prime}\right)$, if $i \neq i^{\prime}$. If $\pi(2 i)=\pi\left(2 i^{\prime}-1\right)$, then we get

$$
(3 i-1) k+2 i=3\left(i^{\prime}-1\right) k+2 i^{\prime}-1
$$

$$
\begin{gathered}
\left(i-i^{\prime}\right)(3 k+2)=-2 k-1 \equiv 2 k+1(\bmod 4 k+2), \\
2\left(i^{\prime}-i\right) k \equiv 0(\bmod 4 k+2)
\end{gathered}
$$

As k is odd and g.c.d. $(4 k+2, k)=1$ it follows that $i^{\prime}-i \equiv 0(\bmod 4 k+2)$. This implies that $4 k+2$ divides $i^{\prime}-i<2 k+1$, which is not possible.
When k is odd, then span of f is equal to:

$$
\begin{aligned}
& f_{1}+f_{2}+f_{3}+, \ldots, f_{4 k}+f_{4 k+1} \\
= & {\left[\left(f_{1}+f_{3}+f_{5}+, \ldots,+f_{4 k+1}\right)\right]+\left[\left(f_{2}+f_{4}+f_{6}+, \ldots,+f_{4 k}\right)\right] } \\
= & \frac{4 k+2}{2}(1)+\frac{4 k+2-2}{2}\left(\frac{k+3}{2}\right) \\
= & k^{2}+5 k+1
\end{aligned}
$$

For even k, g.c.d. $(4 k+2, k)=2$ and $3 k+2 \equiv-k(\bmod 4 k+2)$ implies that $(3 k+2)\left(i-i^{\prime}\right) \equiv k\left(i^{\prime}-i\right) \not \equiv 0(\bmod 4 k+2)$. Because if it does so then $k\left(i^{\prime}-i\right) \equiv$ $k .0(\bmod 4 k+2)$ and $i^{\prime}-i \equiv 0\left(\bmod \frac{4 k+2}{2}\right)$ which is impossible when $0<i-i^{\prime}<$ $\frac{4 k+2}{2}$. Therefore $\pi(2 i-1) \neq \pi\left(2 i^{\prime}-1\right)$, if $i \neq i^{\prime}$. Similarly $\pi(2 i) \neq \pi\left(2 i^{\prime}\right)$, if $i \neq i^{\prime}$. If $\pi(2 i)=\pi\left(2 i^{\prime}-1\right)$, then

$$
\begin{gathered}
(3 i-1) k+2 i=3\left(i^{\prime}-1\right) k+2 i^{\prime}-1 \\
\left(i-i^{\prime}\right)(3 k+2)=-2 k-1 \equiv 2 k+1(\bmod 4 k+2) \\
2\left(i^{\prime}-i\right) k \equiv 0(\bmod 4 k+2)
\end{gathered}
$$

As k is even and g.c.d. $(4 k+2, k)=2$ it follows that $i^{\prime}-i \equiv 0\left(\bmod \frac{4 k+2}{2}\right)$. Which is not possible.
When k is even, then span of f is equal to:

$$
\begin{aligned}
& f_{1}+f_{2}+f_{3}+, \ldots, f_{4 k}+f_{4 k+1} \\
= & {\left[\left(f_{1}+f_{3}+f_{5}+, \ldots,+f_{4 k+1}\right)\right]+\left[\left(f_{2}+f_{4}+f_{6}+, \ldots,+f_{4 k}\right)\right] } \\
= & \frac{4 k+2}{2}(1)+\frac{4 k+2-2}{2}\left(\frac{k+2}{2}\right) \\
= & k^{2}+4 k+1
\end{aligned}
$$

Figure 2. Radio labeling and ordinary labeling of $G(10 ;\{1,2\})$

4. Radio antipodal number for $G(4 k+2 ;\{1,2\})$

In this section, the lower and upper bound for the radio antipodal number are determined and have shown that these bounds are equal.
4.1. Lower bound for $\operatorname{an}(G(4 k+2 ;\{1,2\})$. The technique for finding the lower bound for $\operatorname{an}(G(4 k+2 ;\{1,2\})$ is analogous to that of $\operatorname{rn}(G(4 k+2 ;\{1,2\})$.
Lemma 4.1. Let f be radio antipodal labeling for $V(G(4 k+2 ;\{1,2\}))$, where $\left\{x_{i}: 1 \leq i \leq 4 k+2\right\}$ be the ordering of $V(G(4 k+2 ;\{1,2\}))$ such that $f\left(x_{i}\right) \leq$ $f\left(x_{i+1}\right)$ for all $1 \leq i \leq 4 k+1$, then

$$
f\left(x_{i+2}\right)-f\left(x_{i}\right)=f_{i}+f_{i+1} \geq \begin{cases}\frac{k+2}{2}, & \text { if } k \text { is even } \\ \frac{k+1}{2}, & \text { if } k \text { is odd }\end{cases}
$$

Proof. By definition, $f\left(x_{i+1}\right)-f\left(x_{i}\right) \geq d-d\left(x_{i+1}, x_{i}\right), f\left(x_{i+2}\right)-f\left(x_{i+1}\right) \geq$ $d-d\left(x_{i+2}, x_{i+1}\right)$ and $f\left(x_{i+2}\right)-f\left(x_{i}\right) \geq d-d\left(x_{i+2}, x_{i}\right)$. Summing up these three in-equalities and by Lemma 4, we get

$$
\begin{aligned}
2\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) & \geq 3 d-\left[d\left(x_{i}, x_{i+1}\right)+d\left(x_{i+1}, x_{i+2}\right)+d\left(x_{i}, x_{i+2}\right)\right] \\
2\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) & \geq 3 d-2 d=d \\
\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) & \geq \frac{d}{2}=\frac{k+1}{2}
\end{aligned}
$$

Thus,

$$
f\left(x_{i+2}\right)-f\left(x_{i}\right)=f_{i}+f_{i+1} \geq \begin{cases}\frac{k+2}{2}, & \text { if } k \text { is even } \\ \frac{k+1}{2}, & \text { if } k \text { is odd }\end{cases}
$$

Theorem 4.2. The radio antipodal number of the circulant graphs $G(4 k+$ $2 ;\{1,2\}$) is given by

$$
r n\left(G(4 k+2 ;\{1,2\}) \geq \begin{cases}k^{2}+k, & \text { if } k \text { is odd } \\ k^{2}+2 k, & \text { if } k \text { is even }\end{cases}\right.
$$

Proof. Let f be a distance labeling for $G(4 k+2 ;\{1,2\})$ and $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{4 k+2}\right\}$ be the ordering of vertices of $G(4 k+2 ;\{1,2\})$, such that $f\left(x_{i}\right) \leq f\left(x_{i+1}\right)$ defined by $f\left(x_{1}\right)=0$ and, set $d_{i}=d\left(x_{i}, x_{i+1}\right)$ and $f_{i}=f\left(x_{i+1}\right)-f\left(x_{i}\right)$. Then $f_{i} \geq d-d_{i}$ for all i. By Lemma 7, the span of a distance labeling for $G(4 k+2 ;\{1,2\})$ is

$$
\begin{aligned}
f\left(x_{4 k+2}\right)= & \sum_{i=1}^{n-1} f_{i}=f_{1}+f_{2}+f_{3}+\ldots .+f_{4 k}+f_{4 k+1} \\
= & {\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]+\left[f\left(x_{3}\right)-f\left(x_{2}\right)\right]+\ldots+\left[f\left(x_{4 k+1}\right)-f\left(x_{4 k}\right)\right] } \\
& +\left[f\left(x_{4 k+2}\right)-f\left(x_{4 k+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(f_{1}+f_{2}\right)+\left(f_{3}+f_{4}\right)+\left(f_{5}+f_{6}\right)+\ldots+\left(f_{4 k-1}+f_{4 k}\right)+f_{4 k+1} \\
& =\sum_{i=1}^{\frac{4 k}{2}}\left(f_{2 i-1}+f_{2 i}\right)+f_{4 k+1}
\end{aligned}
$$

Thus,
$f\left(x_{4 k+2}\right) \geq\left\{\begin{array}{l}\frac{4 k}{2}\left(\frac{k+1}{2}\right)+0, \text { if } k \text { is odd; } \\ \frac{4 k}{2}\left(\frac{k+2}{2}\right)+0, \text { if } k \text { is even. }\end{array} \Rightarrow f\left(x_{4 k+2}\right) \geq\left\{\begin{array}{l}k^{2}+k, \text { if } k \text { is odd; } \\ k^{2}+2 k, \text { if } k \text { is even. }\end{array}\right.\right.$

Figure 3. Radio antipodal labeling and ordinary labeling of $G(6 ;\{1,2\})$
4.2. Upper bound for $\operatorname{an}(G(4 k+2 ;\{1,2\})$. To complete the proof of Theorem 2, we find upper bound and show that this upper bound is same as the lower bound for $\operatorname{an}(G(4 k+2 ;\{1,2\}))$. The technique for an upper bound of an $(G(4 k+$ $2 ;\{1,2\})$ is analogous to that of $\operatorname{rn}(G(4 k+2 ;\{1,2\})$, with replacing the color gap sequence.
For odd k. The color gap sequence F is given by:

$$
f_{i}=\left\{\begin{array}{cl}
0, & \text { if } i \text { is odd } \\
\frac{k+1}{2}, & \text { if } i \text { is even }
\end{array}\right.
$$

For even k. The color gap sequence F is given by:

$$
f_{i}= \begin{cases}0, & \text { if } i \text { is odd } \\ \frac{k+2}{2}, & \text { if } i \text { is even }\end{cases}
$$

When k is odd, then span of f is equal to:

$$
\begin{aligned}
& f_{1}+f_{2}+f_{3}+, \ldots, f_{4 k}+f_{4 k+1} \\
= & {\left[\left(f_{1}+f_{3}+f_{5}+, \ldots,+f_{4 k+1}\right)\right]+\left[\left(f_{2}+f_{4}+f_{6}+, \ldots,+f_{4 k}\right)\right] } \\
= & \frac{4 k+2}{2}(0)+\frac{4 k+2-2}{2}\left(\frac{k+1}{2}\right)
\end{aligned}
$$

$$
=k^{2}+k .
$$

When k is even, then span of f is equal to:

$$
\begin{aligned}
& f_{1}+f_{2}+f_{3}+, \ldots, f_{4 k}+f_{4 k+1} \\
= & {\left[\left(f_{1}+f_{3}+f_{5}+, \ldots,+f_{4 k+1}\right)\right]+\left[\left(f_{2}+f_{4}+f_{6}+, \ldots,+f_{4 k}\right)\right] } \\
= & \frac{4 k+2}{2}(0)+\frac{4 k+2-2}{2}\left(\frac{k+2}{2}\right) \\
= & k^{2}+2 k
\end{aligned}
$$

Figure 4. Radio antipodal labeling and ordinary labeling of $G(10 ;\{1,2\})$

References

1. G. Chartrand, L. Nebesk'y and P. Zhang, Radio k-colorings of paths, Discussiones Mathematicae Graph Theory, 24 (2004), 5-21.
2. G. Chartrand, D. Erwin, and P. Zhang, Radio antipodal colourings of cycles, Congressus Numerantium, 144 (2000), 129-141.
3. G. Chartrand, D. Erwin, and P. Zhang, Radio antipodal colourings of graphs, Math. Bohemica, 127 (2002), 57-69.
4. G. Chartrand, D. Erwin, and P. Zhang, and F. Harary, Radio labelings of grphs, Bull. Inst. Combin. appl., 33 (2001), 77-85.
5. W.K. Hale, Frequency assignment: theory and application, Proc IEEE, 68 (1980), 14971514.
6. J.S. Juan and D.F. Liu, Antipodal labelings for cycles, Dec. 12, 2006 (Manuscript).
7. M. Kchikech, R. Khenoufa and O. Togni, Linear and cyclic radio k-labelings of trees, Discussiones Mathematicae Graph Theory, 27 (2007), 105-123.
8. M. Kchikech, R. Khenoufa and O. Togni, Radio k-labelings for cartesian products of graphs, Discussion Mathematicae Graph Theory.
9. R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohemica, 130 (2005), 277-282.
10. R. Khennoufa and O. Togni, The radio antipodal and radio numbers of the hypercube, Ars Combinatoria, 102 (2011), 447-461.
11. D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Disc. Math., 19 (2005), 610-621.
12. D. Liu and M. Xie, Radio number for square cycles, Congr. Numerantium, 169 (2004), 105-125.

Saima Nazeer received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D. at University of the Punjab, Lahore-Pakistan. She is currently assistant Professor at Lahore College for Women University, Lahore-Pakistan. Her research area is graph theory.
Department of Mathematics, Lahore College for Women University, Lahore-Pakistan.
e-mail: saimanazeer123@yahoo.com
Imrana Kousar received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D. from University of the Punjab, Lahore-Pakistan,. She is currently assistant Professor at Lahore College for Women University, Lahore-Pakistan. Her research area is graph theory. Department of Mathematics, Lahore College for Women University, Lahore-Pakistan. e-mail: imrana.kousar@hotmail.com

Waqas Nazeer received M.Sc. from University of the Punjab, Lahore-Pakistan, and Ph.D. from Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan. He is currently assistant Professor at University of Education Township Lahore. His research interests are functional analysis and graph theory.
Department of Mathematics, University of Education Township Lahore, Lahore-Pakistan. e-mail: waqaster@yahoo.com

[^0]: Received March 24, 2014. Revised June 15, 2014. Accepted July 5, 2014. * Corresponding author. ${ }^{\dagger}$ This work was supported by the research grant of Higher Education Commission Pakistan (c) 2015 Korean SIGCAM and KSCAM.

