• Title/Summary/Keyword: graph $(k_0,\

Search Result 291, Processing Time 0.021 seconds

SPANNING 3-FORESTS IN BRIDGES OF A TIGHT SEMIRING IN AN LV-GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1307-1318
    • /
    • 2009
  • An infinite locally finite plane graph is an LV-graph if it is 3-connected and VAP-free. In this paper, as a preparatory work for solving the problem concerning the existence of a spanning 3-tree in an LV-graph, we investigate the existence of a spanning 3-forest in a bridge of type 0,1 or 2 of a tight semi ring in an LV-graph satisfying certain conditions.

  • PDF

ON THE ANNIHILATOR GRAPH OF GROUP RINGS

  • Afkhami, Mojgan;Khashyarmanesh, Kazem;Salehifar, Sepideh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.331-342
    • /
    • 2017
  • Let R be a commutative ring with nonzero identity and G be a nontrivial finite group. Also, let Z(R) be the set of zero-divisors of R and, for $a{\in}Z(R)$, let $ann(a)=\{r{\in}R{\mid}ra=0\}$. The annihilator graph of the group ring RG is defined as the graph AG(RG), whose vertex set consists of the set of nonzero zero-divisors, and two distinct vertices x and y are adjacent if and only if $ann(xy){\neq}ann(x){\cup}ann(y)$. In this paper, we study the annihilator graph associated to a group ring RG.

ON 4-TOTAL MEAN CORDIAL GRAPHS

  • PONRAJ, R.;SUBBULAKSHMI, S.;SOMASUNDARAM, S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.497-506
    • /
    • 2021
  • Let G be a graph. Let f : V (G) → {0, 1, …, k - 1} be a function where k ∈ ℕ and k > 1. For each edge uv, assign the label $f(uv)={\lceil}{\frac{f(u)+f(v)}{2}}{\rceil}$. f is called k-total mean cordial labeling of G if ${\mid}t_{mf}(i)-t_{mf}(j){\mid}{\leq}1$, for all i, j ∈ {0, 1, …, k - 1}, where tmf (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, …, k-1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

GROUPS ACTING ON MEDIAN GRAPHS AND MEDIAN COMPLEXES

  • Ryang, Dohyoung
    • The Pure and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.349-361
    • /
    • 2012
  • CAT(0) cubical complexes are a key to formulate geodesic spaces with nonpositive curvatures. The paper discusses the median structure of CAT90) cubical complexes. Especially, the underlying graph of a CAT(0) cubical complex is a median graph. Using the idea of median structure, this paper shows that groups acting on median complexes L(${\delta}$) groups and, in addition, work L(0) groups are closed under free product.

STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A SEMICOMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.415-427
    • /
    • 2019
  • Let R be an associative ring with nonzero identity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all nonzero proper left ideals and all nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if $I{\cap}({\ell}_R(J){\cup}r_R(J)){\neq}0$ or $J{\cap}({\ell}_R(I){\cup}r_R(I)){\neq}0$, where ${\ell}_R(K)=\{b{\in}R|bK=0\}$ is the left annihilator of a nonempty subset $K{\subseteq}R$, and $r_R(K)=\{b{\in}R|Kb=0\}$ is the right annihilator of a nonempty subset $K{\subseteq}R$. In this paper, we assume that R is a semicommutative ring. We study the structure of ${\Gamma}_{Ann}(R)$. Also, we investigate the relations between the ring-theoretic properties of R and graph-theoretic properties of ${\Gamma}_{Ann}(R)$. Moreover, some combinatorial properties of ${\Gamma}_{Ann}(R)$, such as domination number and clique number, are studied.

THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS

  • Saraei, Fatemeh Esmaeili Khalil
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph $T({\Gamma}(M))$ with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if $m+n{\in}T(M)$. In this paper, we study the basic properties and possible structures of two (induced) subgraphs $Tor_0({\Gamma}(M))$ and $T_0({\Gamma}(M))$ of $T({\Gamma}(M))$, with vertices $T(M){\backslash}\{0\}$ and $M{\backslash}\{0\}$, respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.

ON DOMINATION NUMBERS OF GRAPH BUNDLES

  • Zmazek Blaz;Zerovnik Janez
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.39-48
    • /
    • 2006
  • Let ${\gamma}$(G) be the domination number of a graph G. It is shown that for any $k {\ge} 0$ there exists a Cartesian graph bundle $B{\Box}_{\varphi}F$ such that ${\gamma}(B{\Box}_{\varphi}F) ={\gamma}(B){\gamma}(F)-2k$. The domination numbers of Cartesian bundles of two cycles are determined exactly when the fibre graph is a triangle or a square. A statement similar to Vizing's conjecture on strong graph bundles is shown not to be true by proving the inequality ${\gamma}(B{\bigotimes}_{\varphi}F){\le}{\gamma}(B){\gamma}(F)$ for strong graph bundles. Examples of graphs Band F with ${\gamma}(B{\bigotimes}_{\varphi}F) < {\gamma}(B){\gamma}(F)$ are given.

NEW CONCEPTS OF REGULAR INTERVAL-VALUED FUZZY GRAPHS

  • TALEBI, A.A.;RASHMANLOU, HOSSEIN;DAVVAZ, BIJAN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.95-111
    • /
    • 2017
  • Recently, interval-valued fuzzy graph is a growing research topic as it is the generalization of fuzzy graphs. The interval-valued fuzzy graphs are more flexible and compatible than fuzzy graphs due to the fact that they allowed the degree of membership of a vertex to an edge to be represented by interval values in [0.1] rather than the crisp values between 0 and 1. In this paper, we introduce the concepts of regular and totally regular interval-valued fuzzy graphs and discusses some properties of the ${\mu}$-complement of interval-valued fuzzy graph. Self ${\mu}$-complementary interval-valued fuzzy graphs and self-weak ${\mu}$-complementary interval-valued fuzzy graphs are defined and a necessary condition for an interval valued fuzzy graph to be self ${\mu}$-complementary is discussed. We define busy vertices and free vertices in interval valued fuzzy graph and study their image under an isomorphism.

AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

  • Kerahroodi, Mahtab Koohi;Nabaei, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1056
    • /
    • 2020
  • Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, $^{\bar{\mathbb{AG}}}$(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n, m ∈ ℕ such that InJm = (0) with In, Jm ≠ (0). First, we differentiate when 𝔸𝔾(R) and $^{\bar{\mathbb{AG}}}$(R) coincide. Then, we have characterized the diameter and the girth of $^{\bar{\mathbb{AG}}}$(R) when R is a finite direct products of rings. Moreover, we show that $^{\bar{\mathbb{AG}}}$(R) contains a cycle, if $^{\bar{\mathbb{AG}}}$(R) ≠ 𝔸𝔾(R).