SPANNING 3-FORESTS IN BRIDGES OF A TIGHT SEMIRING IN AN LV-GRAPH

  • Published : 2009.09.30

Abstract

An infinite locally finite plane graph is an LV-graph if it is 3-connected and VAP-free. In this paper, as a preparatory work for solving the problem concerning the existence of a spanning 3-tree in an LV-graph, we investigate the existence of a spanning 3-forest in a bridge of type 0,1 or 2 of a tight semi ring in an LV-graph satisfying certain conditions.

Keywords

References

  1. D.W. Barnette, Trees in polyhedral graphs, Canad. J. Math. 18 (1966), 731-736. https://doi.org/10.4153/CJM-1966-073-4
  2. R. Diestel, Graph Theory (3nd Ed.), Springer-Verlag, Heidelberg, 2005. 83-93.
  3. R. Diestel, On end-faithful spanning trees in infinite graphs, Math. Proc. Camb. Phil. Soc. 107 (1990), 461-473. https://doi.org/10.1017/S0305004100068742
  4. H. Enomoto, T. Iida & K. Ota, Connected spanning subgraphs of 3-connected planar subgraphs, J. Comb. Th. (B) 68 (1996), 314-323. https://doi.org/10.1006/jctb.1996.0072
  5. M.N. Ellingham & K.I. Kawarabayashi, 2-connected spanning subgraphs with low maximum degree in locally planar graphs, J. Comb. Th. B 97 (2007), 401-412. https://doi.org/10.1016/j.jctb.2006.07.002
  6. S.P. Fekete & J. Kremer, Tree spanners in planar graphs, Disc. Appl. Math. 108 (2001), 85-103. https://doi.org/10.1016/S0166-218X(00)00226-2
  7. H. Jung, [2,3]-factors in a 3-connected infinite planar graph, J. Appl. Math. & computing 10 (2002), 27-40. https://doi.org/10.1007/BF02936203
  8. H. Jung, Some problems and results on circuit graphs and triangular graphs, J. Appl. Math. & informatics 26 (2008), 531-540.
  9. H. Jung, A structure theorem and a classification of an infinite locally finite planar graph, J. Appl. Math. & informatics 27 (2009), 531-539.
  10. N. Polat, End-faithful spanning trees in $T_{N1}$ -free graphs, J. Graph Th. 26 (1997), 175-181. https://doi.org/10.1002/(SICI)1097-0118(199712)26:4<175::AID-JGT1>3.0.CO;2-N
  11. J. Siran, End-faithful forests and spanning trees in infinite graphs, Disc. Math. 95 (1991), 331-340. https://doi.org/10.1016/0012-365X(91)90345-3
  12. Y. Teranishi, The number of spanning forests of a graph, Disc. Math. 290 (2005), 259-267. https://doi.org/10.1016/j.disc.2004.10.014