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ON k-GRACEFUL LABELING OF SOME GRAPHS†

P. PRADHAN AND KAMESH KUMAR∗

Abstract. In this paper, it has been shown that the hairy cycle Cn ⊙
rK1, n ≡ 3(mod4), the graph obtained by adding pendant edge to each
pendant vertex of hairy cycle Cn ⊙ 1K1, n ≡ 0(mod4), double graph of
path Pn and double graph of comb Pn ⊙ 1K1 are k-graceful.
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1. Introduction

The k-graceful labeling is the generalization of graceful labeling that intro-
duced by Slater [14] in 1982 and by Maheo and Thuillier [10] also in 1982. Let
G(V,E) be a simple undirected graph with order p and size q, k be an arbitrary
natural number, if there exist an injective mapping f : V (G) → {0, 1, ..., q+k−1}
that induces bijective mapping f∗ : E(G) → {k, k + 1, ..., q + k − 1} where
f∗(u, v) = |f(u) − f(v)| ∀ (u, v) ∈ E(G) and u, v ∈ V (G) then f is called k-
graceful labeling, while f∗ is called an induced edges k-graceful labeling and
the graph G is called k-graceful graph. Graphs that are k-graceful for all k are
sometimes called arbitrarily graceful.

Maheo and Thuillier [10] have shown that cycle Cn is k-graceful if and only if
either n ≡ 0 or 1(mod4) with k even and k ≤ (n− 1)/2 or n ≡ 3(mod4) with k
odd and k ≤ (n2 − 1)/2, while P. Pradhan and et al.[11] have shown that cycle
Cn, n ≡ 0(mod4) is k-graceful for all k ∈ N(set of natural numbers). Maheo
and Thuillier [10] have also proved that the wheel graph W2k+1 is k-graceful and
conjecture that W2k is k-graceful when k ̸= 3 or k ̸= 4. This conjecture has
proved by Liang, Sun and Xu [8]. Liang and Liu [7] have shown that Km,n is
k-graceful. Acharya [1] has shown that eulerian graph with q edges is k-graceful
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if either q ≡ 0 or 1(mod4) with k even or q ≡ 3(mod4) with k odd. Seoud and
Elsakhawi [12] have shown that paths and ladders are k-graceful.

Jirimutu [5] has shown that the graph obtained fromK1,n(n ≥ 1) by attaching
r ≥ 2 edges at each vertex is k-graceful for all k ≥ 2. After that Jirimutu,
Bao and Kong [6] have shown that the graph obtained from K2,n(n ≥ 2) and
K3,n(n ≥ 3) by attaching r ≥ 2 edges at each vertex is k-graceful for all k ≥ 2
and Siqinqimuge and Jirimutu [13] have proved that the graph obtained from
K4,n(n ≥ 4) by attaching r ≥ 2 edges at each vertex is k-graceful for all k ≥ 2.
Deligen, Zhao and Jirimutu [3] have proved that the graph obtained fromK5,n(n ≥
5) by attaching r ≥ 2 edges at each vertex is k-graceful for all k ≥ 2. Bu, Zhang
and He [2] have shown that an even cycle with a fixed number of pendant edges
adjoined to each vertex is k-graceful.

In the following section, it has been shown that the hairy cycle Cn⊙rK1, n ≡
3(mod4) is k-graceful and the graph obtained by adding pendant edge to pendant
vertex of hairy cycle Cn ⊙ 1K1, n ≡ 0(mod4) is also k-graceful.

2. Hairy Cycle

A unicycle graph other than a cycle with the property that the removal of any
edge from the cycle reduces G to a caterpillar is called hairy cycle. The corona
of cycle Cn and rK1 i.e. Cn ⊙ rK1 is the example of hairy cycle.

Theorem 2.1. The hairy cycle Cn ⊙ rK1, n ≡ 3(mod4) is admits k-graceful
labeling where k ≤ r.

Proof. Let ui(i = 1, 2, ..., n) be the cycle vertices of hairy cycle Cn⊙rK1 and the
vertices of the r-hanged edges connected to each ui(i = 1, 2, ..., n) are denoted
by uit(t = 1, 2, ..., r).
Consider the map f : V (Cn⊙rK1) → {0, 1, ..., n(r+1)+k−1} defined as follows:

f(ui) =


(i− 1)(r + 1)

2
, i is odd

n(r + 1) + k − i− i(r − 1)

2
, i is even and i ≤ n+ 1

2

n(r + 1) + k − i− i(r − 1)

2
− 1, i is even and i >

n+ 1

2

and

f(uit) =



i− 1 +
(i− 2)(r − 1)

2
+ (t− 1), i is even and 1 ≤ t ≤ r

n(r + 1) + k − i− (i− 1)(r − 1)

2
− (t− 1), i is odd, i ≤ n+ 1

2
and 1 ≤ t ≤ r

n(r + 1) + k − i− (i− 1)(r − 1)

2
− (t− 1), i is odd, i =

n+ 3

2
and 1 ≤ t < k

n(r + 1) + k − i− (i− 1)(r − 1)

2
− t, i is odd, i =

n+ 3

2
and k ≤ t ≤ r

n(r + 1) + k − i− (i− 1)(r − 1)

2
− t, i is odd, i >

n+ 3

2
and 1 ≤ t ≤ r
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It is easy to check that f is injective mapping from V (Cn⊙rK1) to {0, 1, ..., n(r+
1) + k − 1}. Now we prove that the induced mapping f∗ : E(Cn ⊙ rK1) →
{k, k + 1, ..., n(r + 1) + k − 1} where f∗(u, v) = |f(u) − f(v)| is a bijective
mapping for all edges (u, v) ∈ E(Cn ⊙ rK1). Let

Ai = {|f(ui)− f(uit)| : t = 1, 2, ..., r}, i = 1, 2, ..., n

Bi = {|f(ui+1)− f(ui)| : i = 1, 2, ..., n− 1},
Bn = {|f(un)− f(u1)|}

The edge label induced by f∗ is as follows.

A1 = {|f(u1)− f(u1t)| : t = 1, 2, ..., r}
= {n(r + 1) + k − 1, n(r + 1) + k − 2, ..., n(r + 1)k − r}

B1 = {|f(u2)− f(u1)|} = {n(r + 1) + k − (r + 1)}
A2 = {|f(u2)− f(u2t)| : t = 1, 2, ..., r},

= {n(r + 1) + k − (r + 2), n(r + 1) + k − (r + 3), ..., n(r + 1)k − (2r + 1)}
B2 = {|f(u3)− f(u2)|} = {n(r + 1) + k − (2r + 2)}
A3 = {|f(u3)− f(u3t)| : t = 1, 2, ..., r},

= {n(r + 1) + k − (2r + 3), n(r + 1) + k − (2r + 4), ..., n(r + 1)k − (3r + 2)}
B3 = {|f(u4)− f(u3)|} = {n(r + 1) + k − (3r + 3)}
A4 = {|f(u4)− f(u4t)| : t = 1, 2, ..., r},

= {n(r + 1) + k − (3r + 4), n(r + 1) + k − (3r + 5), ..., n(r + 1)k − (4r + 3)}
B4 = {|f(u5)− f(u4)|} = {n(r + 1) + k − (4r + 4)}

An+1
2

= {|f(un+1
2

)− f(un+1
2

t
)| : t = 1, 2, ..., r},

= {n(r + 1) + k − (
n− 1

2
r +

n+ 1

2
), n(r + 1) + k − (

n− 1

2
r +

n+ 1

2
+ 1), ...,

n(r + 1)k − (
n+ 1

2
r +

n+ 1

2
− 1)}

Bn+1
2

= {|f(un+1
2

+1
)− f(un+1

2
)|} = {n(r + 1) + k − (

n+ 1

2
r +

n+ 1

2
)}

An+1
2

+1
= {|f(un+1

2
+1

)− f(u
(n+1

2
+1)t

| : t = 1, 2, ..., r},

= {n(r + 1) + k − (
n+ 1

2
r +

n+ 1

2
+ 1), n(r + 1) + k − (

n+ 1

2
r +

n+ 1

2
+ 2), ...,

n(r + 1) + k − (
n+ 1

2
r +

n+ 1

2
+ k − 1), n(r + 1) + k − (

n+ 1

2
r +

n+ 1

2
+ k + 1),

..., n(r + 1) + k − ((
n+ 1

2
+ 1)r +

n+ 1

2
+ 1)}

Bn+1
2

+1
= {|f(un+1

2
+2

)− f(un+1
2

+1
)|} = {n(r + 1) + k − (

n+ 1

2
r +

n+ 1

2
+ 2)}

An = {|f(un)− f(unt)| : t = 1, 2, ..., r},
= {n(r + 1) + k − ((n− 1)r + n+ 1), n(r + 1) + k − ((n− 1)r + n+ 2), ..., n(r + 1)k

− (nr + n)}
= {k + r − 1, k + r − 2, ..., k}

Bn = {|f(un)− f(u1)|} = {
(n− 1)(r + 1)

2
} = {n(r + 1) + k − (

n+ 1

2
r +

n+ 1

2
+ k)}
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We tide up the elements of each set and have a union(
n∪

i=1

Ai

)∪(
n∪

i=1

Bi

)
= A1

∪
A2

∪
...
∪

An

∪
B1

∪
B2

∪
...
∪

Bn

= {k, k + 1, ..., n(r + 1) + k − 1}.

So the induced mapping f∗ is a bijective mapping from V (Cn ⊙ rK1) onto
{k, k + 1, ..., n(r + 1) + k − 1}. Thus, the hairy cycle Cn ⊙ rK1, n ≡ 3(mod4)
is admits k-graceful labeling. For example, 3-graceful labeling of hairy cycle
C7 ⊙ 4K1, has shown in Fig. 1. �

Figure 1. 3-graceful labeling of hairy cycle C7 ⊙ 4K1

Theorem 2.2. The graph obtained by adding pendant edge to each pendant
vertex of hairy cycle Cn ⊙ 1K1, n ≡ 0(mod4) admits k-graceful labeling.

Proof. The order and size of the graph G obtained by adding pendant edge to
each pendant vertex of hairy cycle Cn ⊙ 1K1, n ≡ 0(mod4) are respectively 3n
and 3n. Let u1, u2, ..., un be the cycle vertices of Cn ⊙ 1K1, v1, v2, ..., vn be the
vertices adjacent to u1, u2, ..., un and w1, w2, ..., wn be the vertices adjacent to
1K1, v1, v2, ..., vn respectively. Obviously

d(ui) = 3, i = 1, 2, ..., n

d(vi) = 2, i = 1, 2, ..., n

d(wi) = 1, i = 1, 2, ..., n
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Consider a labeling map f : V (G) → {0, 1, ..., 3n+ k − 1} defined as follows:

f(ui) =


3(i− 1)

2
, i is odd

3n+ k − 3i

2
, i is even and i ≤ n

2

3n+ k − 1− 3i

2
, i is even and i >

n

2
.

f(vi) =

{
f(ui+1) + 2, i is odd

f(ui−1) + 2, i is even

f(wi) = f(ui) + 1

It is clear that f is injective and the induced labeling map f∗ : E(G) → {k, k +
1, ..., 3n+ k − 1} defined as f∗(u, v) = |f(u)− f(v)| ∀ (u, v) ∈ E(G) and u, v ∈
V (G), where u and v are adjacent vertices of G, is bijective. Thus f is k-graceful
labeling of the graph G. For example, the graph obtained by adding pendant
edge to each pendant vertex of C16 ⊙ 1K1 and its 3-graceful labeling are shown
in Fig. 2 and Fig. 3 respectively. �

Figure 2

3. Double graph:

Let G′ be a copy of simple graph G, let ui be the vertices of G and vi be the
vertices of G′ correspond with ui. A new graph denoted by D(G) is called the
double graph of G[9] if
V (D(G)) = V (G)

∪
V (G′) and

E(D(G)) = E(G)
∪
E(G′)

∪
{uivj : ui ∈ V (G), vj ∈ V (G′) and uiuj ∈ E(G)}

Theorem 3.1. Double graph of path Pn(n > 1) is k-graceful.



14 P. Pradhan and Kamesh Kumar

Figure 3

Proof. Let Pn be a path with n vertices u1, u2, ..., un and vi be the copy of ui,
then the path P ′

n = v1, v2, ..., vn be copy of Pn. Double graph of path Pn denoted
by D(Pn) have order and size 2n and 4(n− 1) respectively. In the following Fig.
4, Fig. 5 and Fig. 6, we have shown path P9, P ′

9 and double graph D(P9)
respectively.

Figure 4. Path P9

Figure 5. Path P ′
9

Figure 6. Double graph D(P9)

Consider the mapping f : V (D(Pn)) → {0, 1, ..., 4(n− 1) + k − 1} defined as
follows:
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f(ui) =


(i− 1)

2
, i is odd

4(n− 1) + k − i

2
, i is even

f(vi) =

n− 1 +
(i− 1)

2
, i is odd

2(n− 1) + k − i

2
, i is even

It is clear that f is injective and the induced labeling map f∗ : E(D(Pn)) →
{k, k + 1, ..., 4(n − 1) + k − 1} defined as f∗(u, v) = |f(u) − f(v)| ∀ (u, v) ∈
E(D(Pn)) and u, v ∈ V (D(Pn)), where u and v are adjacent vertices of D(Pn),
is bijective. Thus f is k-graceful labeling of the double graph D(Pn). Hence the
double graph D(Pn) is k-graceful. In the following Fig. 7, we have shown the
3-graceful labeling of the double graph D(P9).

Figure 7. 3-graceful labeling of the double graph D(P9)

�

Theorem 3.2. Double graph of comb graph Pn ⊙ 1K1(n > 1) is k-graceful.

Proof. Let {v1, v2, ..., vn} be the set of path vertices and {u1, u2, ..., un} be the
set of pendant vertices of comb graph Pn ⊙ 1K1 such that vi is adjacent to
ui, i = 1, 2, ..., n. Similarly, let {v′1, v′2, ..., v′n} be the set of path vertices and
{u′

1, u
′
2, ..., u

′
n} be the set of pendant vertices of comb graph (Pn ⊙ 1K1)

′ such
that v′i is adjacent to u′

i, i = 1, 2, ..., n. Double graph of comb Pn ⊙ 1K1 denoted
by D(Pn ⊙ 1K1) have order and size 4n and 4(2n − 1) respectively. In the
following Fig. 8, and Fig. 9, we have shown comb graph P7 ⊙ 1K1 and double
graph D(P7 ⊙ 1K1) respectively.

Figure 8. Comb graph P7 ⊙ 1K1
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Figure 9. Double graph D(P7 ⊙ 1K1)

Consider the mapping f : V (D(Pn)) → {0, 1, ..., 4(2n− 1) + k− 1} defined as
follows:

f(vi) =

{
i− 1, i is odd

4(2n− 1) + k − i, i is even

f(ui) =

{
i− 1, i is even

4(2n− 1) + k − i, i is odd

f(v′i) =

{
2(n− 1) + i, i is odd

2(2n− 1) + k − i, i is even

f(u′
i) =

{
2(n− 1) + i, i is even

2(2n− 1) + k − i, i is odd

It is clear that f is injective and the induced labeling map f∗ : E(D(Pn ⊙
1K1)) → {k, k+1, ..., 4(2n−1)+k−1} defined as f∗(u, v) = |f(u)−f(v)| ∀ (u, v) ∈
E(D(Pn ⊙ 1K1)) and u, v ∈ V (D(Pn ⊙ 1K1)), where u and v are adjacent ver-
tices of D(Pn ⊙ 1K1), is bijective. Thus f is k-graceful labeling of the double
graph D(Pn ⊙ 1K1). Hence the double graph D(Pn ⊙ 1K1) is k-graceful. In the
following Fig. 10, we have shown the 4-graceful labeling of the double graph
D(P7 ⊙ 1K1).

Figure 10. 4-graceful labeling of the double graph D(P7 ⊙ 1K1)

�
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