• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.041 seconds

Fuzzy Model Identification Using A mGA Hybrid Scheme (mGA의 혼합된 구조를 사용한 퍼지모델 동정)

  • Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.507-509
    • /
    • 1999
  • In this paper, we propose a new fuzzy model identification method that can yield a successful fuzzy rule base for fundamental approximations. The method in this paper uses a set of input-output data and is based on a hybrid messy genetic algorithm (mGA) with a fine-tuning scheme. The mGA processes variable-length strings, while standard GAs work with a fixed-length coding scheme. For successfully identifying a complex nonlinear system, we first use the mGA, which coarsely optimizes the structure and the parameters of the fuzzy inference system, and then the gradient descent method which tine tunes the identified fuzzy model. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a nonlinear approximation.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블렛 신경 회로망을 이용한 혼돈 비선형 시스템의 모델링)

  • Park, Sang-Woo;Choi, Jong-Tae;Yoon, Tae-Sung;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2034-2036
    • /
    • 2002
  • In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

  • PDF

Wavelet Neural Network Controller for AQM in a TCP Network: Adaptive Learning Rates Approach

  • Kim, Jae-Man;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.526-533
    • /
    • 2008
  • We propose a wavelet neural network (WNN) control method for active queue management (AQM) in an end-to-end TCP network, which is trained by adaptive learning rates (ALRs). In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In our method, the WNN controller using ALRs is designed to overcome these problems. It adaptively controls the dropping probability of the packets and is trained by gradient-descent algorithm. We apply Lyapunov theorem to verify the stability of the WNN controller using ALRs. Simulations are carried out to demonstrate the effectiveness of the proposed method.

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Path Tracking Control Using a Wavelet Neural Network for Mobile Robots (웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구)

  • Kim, Byung-Soo;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF