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Wavelet Neural Network Controller for AQM in a TCP Network:
Adaptive Learning Rates Approach

Jae Man Kim, Jin Bae Park*, and Yoon Ho Choi

Abstract: We propose a wavelet neural network (WNN) control method for active queue
management (AQM) in an end-to-end TCP network, which is trained by adaptive learning rates
(ALRs). In the TCP network, AQM is important to regulate the queue length by passing or
dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for
AQM. But these algorithms show weaknesses in the detection and control of congestion under
dynamically changing network situations. In our method, the WNN controller using ALRs is
designed to overcome these problems. It adaptively controls the dropping probability of the
packets and is trained by gradient-descent algorithm. We apply Lyapunov theorem to verify the
stability of the WNN controller using ALRs. Simulations are carried out to demonstrate the

effectiveness of the proposed method.

Keywords: Adaptive learning, AQM, congestion control, wavelet neural network.

1. INTRODUCTION

Congestion control for a TCP network has been
widely studied since data transmission through the
Internet has been increased [1-4]. In the TCP network,
data transmission over the allocated capacity of link
causes packet drops, which results in the
retransmissions of lost packets. Therefore, the core of
congestion control for the TCP network is to inhibit an
incipient congestion and to realize retrieval from the
congested network condition.

Active queue management (AQM) was introduced
as a methodology to control the end-to-end congestion
in the Internet. AQM primarily responds to network
congestion when a queue begins to increase and then
maintains a queue size at a predefined level in the
router. By keeping the average queue size small, AQM
has the ability to preserve the efficient queue
utilization and to reduce the delays occurred by the
network flow, which is particularly important for real-
time interactive applications. RED algorithm has been
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proposed for AQM scheme, which is the first practical
and most well-known method. RED algorithm lessens
end-to-end delay time and prevents consecutive
packet drops, which results in oscillation in link
utilization and global synchronization [5,6]. However,
it shows drawbacks in that the performance of RED
algorithm is very sensitive to traffic load and its
parameter setting, moreover, it is hard to reduce the
queue fluctuation by only adjusting parameters in the
RED algorithm {7].

PI and PID control methods also have been
proposed for AQM scheme. They are control-theoretic
AQM approaches, which are mostly used in classical
linear control problems. Hollot [8] analyzed the effect
on stability caused by network parameters based PI
control method. This AQM scheme was compared
with RED algorithm and demonstrated improvement
on performance in [3]. The PID control method also
shows better performance than RED in [10]. However,
PI and PID control algorithms are problematic and
unrealistic as well because they take the network as a
linear and constant system even though the actual
network environment is a nonlinear system [9].

On the other hand, wavelet neural network (WNN)
has been used as the tool of identification or control
for nonlinear systems. It has the advantage of multi-
resolution of wavelets and fast convergence compared
to multi-layer perceptron (MLP). The weights of
WNN are usually trained by gradient-decent (GD)
method, and the learning rates in the GD method are
fixed arbitrary constants. However, since the fixed
learning rates (FLRs) are not optimal learning rates,
the system performance is sensitive to parameters.

Therefore, we propose a novel WNN control
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method based on adaptive learning rates (ALRS) for
AQM in the TCP network. The proposed WNN
controller can be applied to linear systems as well as
time-varying nonlinear systems, since it is not
sensitive to its parameters setting. The proposed
method further has an advantage in that it repeatedly
searches the optimal learning rates using Lyapunov
theory, and changes the weighting vectors. The
proposed WNN controller using optimal learning rates
minimizes the error between the desired queue length
and the network queue length.

This paper is organized as follows. In Section 2, we
present the TCP nonlinear dynamic model and WNN
based control theory for AQM. We also describe the
learning method of WNN. Section 3 discusses the
stability analysis of the system via ALRs. Simulation
results are shown in Section 4, and the conclusions are
presented in Section 3.

2. PRELIMINARIES

2.1. TCP network model
The nonlinear model for TCP flow control was

proposed [6-8]. The simplified version that ignores the
TCP timeout mechanism is as follows:

W(n+1)=W(n) +L

R(n)
_ W)W (n-R(n) B
R Ty PR ()
g(n+1) = q(m) + 2 y oy -,
R(n)

where W(n) denotes TCP window size, ¢(n) is the
queue length at a router, R(n) is round trip time
(RTT) calculated by ¢(n)/C+T,, C 1is link

capacity, T, is propagation delay, N is the number

of TCP sessions (load factor), and p(n) is the

probability of packet loss. The AQM controller for the
simplified and inaccurate linear TCP model is not
optimal, because the real TCP network is rapidly
changed, that is, the network parameters, the number
of TCP sessions, and the capacity of the link are
hardly kept at constant values for a long time.
Therefore, it is necessary to design an adaptive
controller for nonlinear network systems.

2.2. WNN structure

The WNN is designed as a four-layer structure
[11,12]. Each layer has one or more nodes. Since the
objective is to design a WNN controller which adjusts
the queue length of the TCP network to the desired

queue length, that is, the error ey = g —q should be

minimized, where ¢ and ¢ represent the actual

queue length and the desired queue

respectively. The inputs of WNN are ¢,

which are previous step values. In the mother wavelet
layer, each node performs a wavelet ¢, that is

length,
and p,

derived from its mother wavelet. For the jth node,

¢(z,-k>=¢[x";ﬂ], 2)
ik

where mj and dj are the translation and dilation

in the jth term of the £k th input to the node of the

mother wavelet layer, respectively. There are many
kinds of mother wavelets that can be used in WNN. In
this paper, the first derivative of a Gaussian function,

¢(z)=—zexp(—0.522), is selected as a mother

wavelet. In addition, each node / in the wavelet
layer is denoted by I1 which multiplies the mother
wavelet outputs. For the [ th rule node,

D (x) = T14(z j)- )

The output of WNN, which is a control input of the
TCP model, is composed by each wavelet and
parameters as follows:

Nw Ni
y=0(x,0) =Y ;@ (x)+ D ayx; +ap, 4
[=1 k=1

where a, and g; are connection weight between

input nodes and output nodes, respectively. N, and

N,, represent the number of nodes in the input layers
and the product layers, respectively. ¢; is a

connection weight between wavelet nodes and output
nodes, and Q is the set of adjustable parameters:

Q={my.d.c,ar,a|. (5)

2.3. Training algorithm for WNN weights

The core part of the training algorithm for WNN
concerns how to obtain gradient vectors. Each of the
elements in the training algorithm are defined as the
derivative of cost function with respect to a parameter
of the network, and this is done by means of the chain
rule and the back-propagation (BP) learning rule.

A direct adaptive controller based on WNN is
considered in Fig. 1. The error, which is the difference
between the output of AQM of the TCP network and
the desired queue length, is the input of a direct
adaptive controller.

To describe the training algorithm of WNN using
the GD method, the cost function is defined as
follows:
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Fig. 1. Control structure for TCP model.
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where ¢(n) is the current output value of the TCP
model and g,,(n) is the desired output value. The

training method is based on the minimization of the
cost function. The minimization is performed by the
following GD method:

Q(n+1)=Q(n) - AQ(n)

7
— Q-7 5{3(;:;)) ’ (7)

where 7 is the learning rate of a WNN.

The partial derivative of the cost function with respect
to weighting vector can be represented as follows:

oq(n)
aQ(n)

aJ(Q(n) _
Q)

Qfl,(JQ ou(n)
du(n) 0Q(n)’
()

is the system sensi-

e, (n) =—e,(n)

where u(n) = p(n), and %(n)
u(n

tivity. The partial derivatives of the control input
u(n) with respect to weighting vector € are as

follows:
ou(n) _ ©)
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3. STABILITY ANALYSIS VIAALRS

The update rule of weighting vectors calls for the
proper choice of learning rate 7 [13]. For a small

value of 77, the convergence is guaranteed but the

convergence speed is very slow. On the other hand if
n is too large, the algorithm becomes unstable.

Hence, this section develops a guideline for the
selection of proper learning rates.

Let us define a discrete Lyapunov function as
follows:

v =3[e,m], (15)

where e (n) represents the error between the

network queue length and the reference queue value.
The error difference due to the learning rate can be
expressed as follows:

8eq (n)
Aey (n)=e (n+1)—e,(n) = 20 AQ, (16)
where
AQ =1ne,(n) %(n) ou(r) (7

du(n) 0Q(n)’

denotes the change in an arbitrary weighting vector,
and 7 represents the corresponding learning rate in

WNN.
Then, the change of Lyapunov function due to the
training process can be represented by

AV(n)=V(n+1)-V(n)
1
= E[eg(n +1)- ej(n)]
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2’ {,, ) 2}[1_;,362 55%}
=-Ae}(m)G,
where o
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Theorem 1: Let
T T
77=[?71, 0t 775} {77“0, n%, 0% n¢, 17”]

be the learning rates for the tuning parameters of
WNN, and define U,, as

T
Umax :[Ul,max U2,max U3 max U4 max US max J

{max oum) | Naumw | - ou(w|

Oay(n) “ Oay;, (n)ﬂ " oc(n) H

max Ou(n) X Ou(n) } @an
od(n) om(n)

Then, asymptotic convergence is guaranteed if ryi is
chosen to satisfy

0<;;"<—2————~ i=1,5. (22)
G (U! max)
Proof: In (19),
PO 00 2[1—-1—0 || u(n) 2)
aQ(n) 2 aQ(n)
(23)

2
ou(n) IRy 2
S v (1 i (Uimax ) )

Since the change of Lyapunov function is
AV (n)= -2, (n)G?, (24)

the convergence of WNN is guaranteed if A1 >0
This completes the proof.

Corollary 1: The maximum learning rates whlch
guarantee the convergence are

1

i .
7?max: s £=1,---,5. (25)
Gz(Ui,max )2

Proof: Since in Theorem 1,

2 2
A=p ou(n) 1_1776,2 ou(n)
0Q(n) 2 oQ(n)
- 2
2
ou(myy |1 2 _» 1
> - —|U; G |n-
Qn)| | 2 ( AMax ) G2 ( Us o )3
1
—_— >0 (26)
26% (U max )

Then, from (22) and (26), we can obtain (25). This

completes the proof. 0
Theorem 2: Let 1% be the learning rate for
weight gy. Then, the asymptotic convergence is

guaranteed if the learning rate satisfies
0<n® < % v2)
G

Proof: Since

Uy =248y, (8)
8630
then, HUI (n)]] < U gy max Therefore, from

Theorem 1, we find (27). This completes the proof. O
Theorem 3: Let 7“F be the learning rate for the

weight «,. Then, the asymptotic convergence is
guaranteed if the learning rate satisfies
0<n% <—-—2—— (29)
n 5 3
G Ni|xmm([
Proof: Since
Up(ny =242 _ x, (30)
&:k

where X = x,%y,+,x». | is the input of WNN, we
1,%2 N;

2
have ||U2 (n)n2 <N; HU2,max N .
Theorem 1, we have (29). This completes the proof. [J

Therefore, from

Theorem 4: Let 7° be the learning rate for the

weight c¢. Then, the asymptotic convergence is
guaranteed if the learning rate satisfies

0<n® < (31
w
Proof: Since
Uy(my =240 _ g, (32)
oc
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where @ =[(I)1,(I)2,---,CDNWJ is the output of the
wavelet layer, we have @; <1 for all /, HU3 (n)”

<N, . Therefore, from Theorem 1, we have (31).

This completes the proof. d
In order to prove Theorem 5, the following lemmas
are used.
Lemma 1:

Let f(t)zz‘exp(—tz), then |f(r)|<1,VieR.
Lemma 2:

Let g(r)=1 exp(—tz), then |g(r) <1,V e R

Theorem 5: Let nm,qd be the learning rates for

the translation and dilation weights, respectively. Then,

the asymptotic convergence is guaranteed if the
learning rates satisfy

2
0<p™ < 5 2 ! , (33)
G*N,N,, o] Zexp(—O.S))
e |dminI
2
d 1
0<7’ <— , (3%
GN.N,, | l[Zexp(O.S)J
e ’dminl
where N, is the number of nodes in the product
layer of WNN,
Proof: The learning rate 7™ of the translation
weight m :
ou(n
Us(n)= ()
om(n)
Ny N’ 5¢(ij) azjk o
Z . am (35)
N, N
< Z ax(2exp( -0. 5)(—-))
=1 k=l d
According to Lemma 2, we obtain
1, 1 1, 1 ,
[Ezjk 2}exp{ (2ij —EJ} <1, (36)
2exp
Jusl < ZCIJ‘ [ )}
mm (37)

<IN AN Jeima]

2exp(-0. 5)‘
mln

Therefore, from Theorem 1, we find (33).

The learning rate I]d of the translation weight d :

Ou
Uy(n) = adE:;
Ny N a¢(ij)&}.k
< max| ———-—— (3%)
24, oy od

< Zc, Z max [2 exp(0. 5)( D

=1 k=1

According to Lemmas 1 and 2, we obtain

2 exp(~2h )‘ <1, (39)

(2333
ot < Yo 22202
<\/]'\—/"\/A—[ ’2exp(0 5)

From Theorem 1, we obtain (34). This completes the
proof. 0

Remark 1: From Corollary 1, the maximum
learning rates of the WNN are as follows:

<1, (40)

(41)

AR “2)
1
e —, #3)
G*N; ixmax|
1
= (44)
NW
2
m_ . 1 1 45)
G°N,N,, 2exp(-0.5)
o il
min
2
1 1
7 =— (46)
G°N,N,, 2exp(0.5)
|Cmax1 W
min

4. SIMULATIONS

In this section, we verify the performances of the
proposed WNN controller using ALRs through
computer simulations, and then compare the results
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User Server

Fig. 2. TCP network topology.

with the performances of the PID controller and WNN
controller using FLRs. We use a simple bottleneck
network topology as shown in Fig. 2. The capacity of
bottleneck link between routers 1 and 2 is 15Mbps.
The propagation delay is 15ms. All links between
users and router 1 have 10Mbps capacity and those
with propagation delay are also 15ms. The size of all
queues is 300 packets. The number of TCP sessions is
120, and the reference queue length is 200 packets
[14]. We get the parameters of PID controller in [10]
and set the values of initial ALRs and FLRs to 0.0001.

We carry out the simulations on two TCP network
conditions. In static network condition, the
simulations are performed by fixing the desired queue
length and the number of TCP sessions to a constant
value. And, in dynamic network condition, the
simulations are performed by changing the desired
queue length and the number of TCP sessions.

4.1. Static TCP network

First, we compare the performances of three
controllers: PID, WNN controllers using FLRs, and
ALRs. The instantaneous queue lengths for these three
controllers are shown in Fig. 3. As presented in Fig. 3,
the plot for the PID controller extremely oscillates at
the desired queue length of 200 packets. That is, the
performance of PID controller is not adaptive to
change upon the environment of the TCP network.
The WNN controller using FLRs makes the system
more stable than the PID controller. However, it also
shows a drawback in that there exists a gap between
the queue length and the desired value of 200 packets.
The WNN controller using ALRs demonstrates the
acceptable performance. It decreases the packets drop,
therefore transmits more packets through the router in
TCP network than other controllers.

4.2, Dynamic TCP network
4.2.1 Dynamic reference queue length

In this simulation, we investigate the ability of each
scheme when the reference queue length (g,.)

varies from 200 packets to 150 packets. The router is
more congested by the reduction of reference length.
Fig. 4 shows the queue lengths for the PID controller,
WNN controllers using FLRs, and ALRs. For PID
controller and WNN controller using FLRs, more

Queue length

0 50 100 150 200

Time(s)
(a) PID controller.
400
350
300
250} |
o l,r
& oo i
g |t
g, |
150+
100
50§
0O .;a 1I0 1‘5 21) 2I5 30
Tts)
(b) WNN controller using FLRs.
400
350

Queue length
Ny
(=3
(=3

0 5 10 15 20 25 30
Tis)

(c) WNN controller using ALRs.
Fig. 3. Queue length for static TCP network.

packets are dropped. However, WNN controller using
ALRs make the system adaptive to the change of
reference queue length, therefore, the packet drop is
uniform before and after the change of reference
queue length.

4.2.2 Dynamic TCP sessions

We consider the case that the number of TCP
sessions changes from 100 to 200, and the value of
other parameters is equal to the simulations
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Fig. 4. Queue length for dynamic TCP network
(Changing reference queue length).

(=]

considered in 4.1 Fig. 5 shows the queue lengths for
three controllers. In Fig. 5, we can see that the PID
controller has the overshoot at the time when the TCP
session changes to 200. But WNN controllers using
FLRs and ALRs do not have the occurrence of
overshoot and show the uniform queue length
unrelated to the number of TCP sessions. These
results also demonstrate that the WNN controller
using ALRs has faster adaptability for the dynamic
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<

Fig. 5. Queue length for dynamic TCP network
(Changing TCP sessions).

TCP sessions than others.
5. CONCLUSIONS

The adaptive WNN controller using ALRs has been
proposed for AQM in the TCP network. The WNN
controller using ALRs is operated as a direct adaptive
controller, where the output is a dropping probability
of packets at the router. The proposed controller
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maintains the actual queue size close to a reference
queue value, which is trained by the GD method with
ALRs. By using the Lyapunov theorem, we obtain the
ALRs for the stable queue length, and show the
stability of the whole control scheme. Through
simulation results, we show that the proposed control
method is more adaptive than PID and WNN using
FLR controllers in both the static and the dynamic
TCP network systems.
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