• Title/Summary/Keyword: gradient flow

Search Result 1,171, Processing Time 0.037 seconds

Uncertainty Analysis for Head and Gradient Incorporating Spatial Nonuniformity of Hydraulic Conductivity around Underground Storage Caverns (지하공동주변 수리전도도의 불균일성을 도입한 수두 및 동수경사의 불확실성 해석)

  • Jeong, Il-Mun;Jo, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.553-564
    • /
    • 1998
  • For the proper design and management of underground storage cavern, groundwater flow around cavern should be analyzed. Since this flow is influenced by spatial nonuniformity of hudraulic conductivity, the two-dimensional finite element flow model incorporating stochastic concepts was developed to analyze influences due to this nonuniformity. Monte Carlo technique was applied to obtain an approximate solution for two-dimensional, steady flow in a stochastically defined nonuniform medisu. For this purpose, the values of hydraulic conductivity were generated for each element with known mean and standard deviations. The uncertainty in model prediction depends on both the nonuniformity in hydraulic conductivity and the natures of the flow system such as water curtain and boundary condition. Therefore the uncertainties in predicted hydraulic head and gradient are the greatest where the mean hydraulic gradients are relatively large and far from the boundaries. Especially, we relate these uncertainties with well known gas tightness condition.

  • PDF

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

Effects of Discontinuous Percoll Gradient Containing Alpha-linolenic Acid on Characteristics of Frozen-thawed Boar Spermatozoa

  • Kim, Doo-San;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.58-64
    • /
    • 2020
  • This present study was conducted to investigate protective effect of discontinuous Percoll gradient containing alpha-linolenic acid (ALA) before freezing process on viability, acrosome damage, mitochondrial activity, and oxidative stress of frozen-thawed boar spermatozoa. The separation of spermatozoa by discontinuous Percoll gradient was performed by different concentration of Percoll solution (45/90%) containing ALA combined with bovine serum albumin (BSA), and collected sperm in each Percoll layer was cryopreserved. To evaluate viability, acrosome damage, mitochondrial activity, and reactive oxygen species (ROS) level of frozen-thawed sperm, flow cytometry was used. Morphological abnormalities were observed under light microscope. In results, viability of sperm from 90% Percoll layer was higher than control and 45% Percoll group (p < 0.05). Separated sperm in 90% Percoll layer had lower acrosome damage and morphological abnormalities than control as well as viability, whereas 45% Percoll group was higher (p < 0.05). Similar with acrosome damage and abnormalities, mitochondrial activity was slightly enhanced and the population of live sperm with high ROS level was decreased by 90% Percoll separation, however, there was no significant difference. Supplementation of 3 ng/mL ALA into Percoll solution increased sperm viability and decreased population of live sperm with high ROS compared to control (p < 0.05). In conclusion, discontinuous Percoll gradient before freezing process could improve efficiency of cryopreservation of boar sperm through selection of sperm with high freezing resistance, and supplement of ALA during Percoll gradient might contribute suppression of ROS generation via stabilizing of plasma membrane during cryopreservation.

AVERAGE LIQUID LEVEL AND PRESSURE DROP FOR COUNTERCURRENT STRATIFIED TWO-PHASE FLOW

  • Kim, Yang-Seok;Yu, Seon-Oh;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.301-306
    • /
    • 1996
  • To predict the average liquid level under the condition of the countercurrent stratified two-phase flow in a pipe, an analytical model has been suggested. This is made by introducing the interfacial level gradient into the liquid-phase and the gas-phase momentum equations. The analytical method for the gas-phase pressure drop calculation with f$_i$ $\neq$ f$_G$ has also been described using the liquid level prediction model developed in the present study.

  • PDF

HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE

  • Lei, Yutian
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.585-603
    • /
    • 2007
  • The author studies the local $H\ddot{o}lder$ convergence of the solution to an evolution equation of p-Ginzburg-Landau type, to the heat flow of the p-harmonic map, when the parameter tends to zero. The convergence is derived by establishing a uniform gradient estimation for the solution of the regularized equation.

Inverse Design For a Airfoil Using Optimizing Method (최적화기법을 이용한 익형의 역설계)

  • Kim Jong-seub;Park Warn-gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.126-130
    • /
    • 1997
  • A new and efficient method is presented for design optimization, which is based on a computational fluid dynamics (CFD). The method is applied to design an airfoil configuration. The Navier-Stokes equations are solved for the viscous analysis of the flow, which provides the object function. The CFD analysis is then coupled with the optimization procedure that used a conjugate gradient method. During the one-dimensional search of the optimization procedure, an approximate flow analysis based on a first-order Taylor series expansion is used to reduce the computational cost, (This study is supported by Korean Ministry of Education through Research Fund)

  • PDF

CORRECTION METHOD OF ESTIMATED INSERTION-LOSS WITH FLOW

  • Nishimura, Tsuyoshi;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.746-751
    • /
    • 1994
  • The four-terminal transmission matrix method has been widely used to estimate the insertion-loss. However, the predictins using the equations in the four-terminal transmission matrix method do not reflect a practical phenomenon accurately, In this paper, the correction method to derive the insertion-loss for a constant sound pressure source is presented. The method of correction to the four-terminal transmission matrix method was proposed by rewriting the real and imaginary parts as they depend solely on the flow velocity. Then the result was compensated for by adding the component of the temperature gradient.

  • PDF

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Dimensionless flow Duration Curve in Natural River (자연하천의 무차원 유황곡선)

  • Park, Sang-Deog
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • Flow duration curves provide a compact summary of streamflow variability. In this study, characteristics of the dimensionless flow duration curve in natural rivers with the unregulated discharge were investigated. An analysis of flow duration characteristics was conducted with discharge data at stage-gauging stations of IHP representative basins and of the major rivers in Korea. Discharge characteristics are dependent on area of watershed. However, flow duration coefficients except drought duration coefficient are independent on that. Abundant flow duration coefficient was constant value. The coefficient of flow duration variability defined in this study as the ratio of the normal stream flow over the drought one is decreased with increasing of the watershed area, which implies that the watershed area affects the drought flow duration variability more than the low flow one. And the coefficient of flow duration variability is increased with the river gradient.

INCOMPRESSIBLE FLOW COMPUTATIONS BY HERMITE CUBIC, QUARTIC AND QUINTIC STREAM FUNCTIONS (Hermite 3차, 4차 및 5차 유동함수에 의한 비압축성 유동계산)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.49-55
    • /
    • 2009
  • This paper evaluates performances of a recently developed divergence-free finite element method based on Hermite interpolated stream functions. Velocity bases are derived from Hermite interpolated stream functions to form divergence-free basis functions. These velocity basis functions constitute a solenoidal function space, and the simple gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into a solenoidal and an irrotational parts, and the decoupled Navier-Stokes equations are projected onto their corresponding spaces to form proper variational formulations. To access accuracy and convergence of the present algorithm, three test problems are selected. They are lid-driven cavity flow, flow over a backward-facing step and buoyancy-driven flow within a square enclosure. Hermite interpolation functions from cubic to quintic are chosen to run the test problems. Numerical results are shown. In all cases it has shown that the present method has performed well in accuracies and convergences. Moreover, the present method does not require an upwinding or a stabilized term.

  • PDF