멤브레인 여과 실험에서 얻어진 데이터 처리에 간단한 수치해석을 적용하여 삼투압(osmotic pressure) 과 구배확산계수(gradient diffusion coefficient)를 도출하는 새로운 방법론을 제시하였다. 삼투압과 구배확산계수는 이론 및 실험적으로 쉽게 구할 수 없는 물리적 특성치로서 멤브레인 여과의 특성 규명에 중요하다. 모델 라텍스 콜로이드의 여과시간에 따른 투과플럭스(permeate flux) 값과 이에 대한 수치적분과 수치미분 데이터로부터 분산된 입자농도의 함수인 삼투압 관계식을 구했다. 이로부터 계산된 열역학적 계수(thermodynamic coefficient)는 입자농도가 증가할수록 감소하는 거동을 보였고, 여기에 기존에 제시되어 있는 수력학적 계수(hydrodynamic coefficient)를 도입하여 구배확산계수를 산출하였다. 아울러, 본 연구에서 계산된 입자농도에 따른 구배확산계수의 결과와 동일한 멤브레인과 라텍스 콜로이드의 여과에 대해서 기존에 통계역학적 시뮬레이션으로 예측한 결과를 비교하였다.
In proton-conducting perovskites, oxygen ions and protons make a diffusion pair for a chemical diffusion and thus lead to the transport of $H_2O$ under its chemical potential gradient. The present manuscript develops relationships between the chemical diffusion coefficient of $H_2O$ and the diffusion coefficients of protons and oxygen vacancies with an emphasis on the thermodynamic behavior of the oxygen vacancies. Depending on the degree of hydration X, two different expressions of the chemical diffusion coefficient were obtained : equation omitted and equation omitted.
Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.159-162
/
2008
This paper presents a modified mean curvature diffusion filter to smooth speckle noise in images. Mean curvature diffusion filter has already shown good results in reducing noise in images while preserving fine details. In the mean curvature diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. In this paper, the diffusion coefficient is modified to be controlled adaptively by local image surface slope and heterogeneity. The local surface slope contributes to preserving details (e.g.edges) in image and the local surface heterogeneity helps the smoothing filter consider the amount of noise in both edge and non-edge area. The proposed filter's performance is demonstrated by quantitative experiments using speckle noised aerial image and TerraSAR-X satellite image.
Anisotropic diffusion is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. In anisotropic diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. El-Fallah and Gary E. Ford represented the image as a surface and proved that setting the inhomogeneous diffusion coefficient equal to the inverse of the magnitude of the surface normal results in surface evolving speed that is proportional to the mean curvature of the image surface. This model has the advantage of having the mean curvature diffusion (MCD) render invariant magnitude, thereby preserving structure and locality. In this paper, the proposed MCD model efficiently reduces diffusion coefficient at the thin edges using the smoothness of the surface.
Self-diffusion coefficients of colloidal ass9Ciation structures in the aqueous solutions of anionic ammonium dodecyl sulfate (ADS) and cationic octadecyltrimethylammonium chloride (OTAC) surfactants were measured by pulsed-gradient spin echo NMR. The results were interpreted on the basis of the ADS/OTAC/water phase diagram. Crossing the phase boundaries, significant changes in self diffusion coefficients were observed and well correlated to the phase diagram. For the micelles their apparent radii were obtained from Stokes-Einstein equation. Their values were 15 for the ADS micelles and 54 ${{\AA}}$ for the OTAC micelles, respectively. For vesicles which were formed spontaneously at different relative amounts of the surfactants and total surfactant concentrations, the radius was measured as 50 to 200 nm. This result is in fair agreement with those by TEM and light scattering.
본 연구는 반폐쇄성 해역인 마산만을 대상으로 eco-hydrodynamic model을 이용하여 해역의 물리적 구조를 분석하여, 물리적 안정도를 나타내는 수직확산계수를 산정하고, 생태계 모델에 적용하여 그 타당성을 평가하는 것이다. 해역의 물리적 구조는 EFDC모델을 사용하여 구하였으며, 수직 확산계수는 수층간의 밀도차이가 커질수록 감소하도록 산정하였다. 산정된 수직 확산계수를 Stella프로그램을 이용하여 구축한 생태계모델에 적용하여, 용존산소 재현성으로 그 타당성을 평가하였다. 수직확산계수 변화를 추정하여 적용한 모델의 결과는 2008년의 $R^2$값은 0.529~0.700으로 나타났으며, 2009년 $R^2$값은 0.542~0.791로 나타났다. 계산값은 관측값과 유사한 경향을 나타내었으며, 만 내측의 빈산소수괴를 잘 재현하였다. 본 연구에서 적용된 수직확산계수는 해역의 밀도성층과 물리적 안정도를 의미하는데, 향후 폐쇄성 내만해역의 빈산소수괴 발생 예측에 유용하게 활용될 것으로 판단된다.
The effects of the sample viscosity and volume on the convective flows induced by temperature gradient in PGSE-NMR self-diffusion measurements at high temperature have been investigated. The experimental results showed that the viscosity of the liquid sample strongly affects the magnitude of the convective flows as well as the diffusion coefficient itself. It was also found that the convective flows increase as the sample volume increase.
본 연구는 원격탐사 영상분류 과정에 이방성 분산 복원의 적용을 제안하고 있다. 수정 이방성 분산 복원은 많은 원격탐사 영상에 나타나는 지리적 연결성을 대표하는 Markov random field에 기반한 확률적 모형을 사용하고 있고 반복적인 확산과정을 통해 영상복원을 수행한다. 제안 확산과정은 지리적 연결성과 연관된 응집력 계수를 위하여 brightness gradient의 함수를 사용하며 매 반복단계마다 adaptive하게 추정한다. 한반도의 위성 원격탐사 자료에 대한 실험을 실시하였고 제안된 수정 이방성 분산 복원의 적용은 실제 관측 자료에도 매우 효과적임을 알 수 있었다.
Kim, Su-Deuk;Lee, Yun-Jung;Joo, Hyun-Hye;Ahn, Sang-Doo
한국자기공명학회논문지
/
제12권1호
/
pp.51-59
/
2008
Convection effect in liquids has been one of the main targets to be overcome in pulsed-field-gradient NMR measurements of self-diffusion coefficients since the temperature gradient along the sample tube generated by the heating and/or cooling process causes the effect, resulting in additional diffusion. It is known that the capillary is the most appropriate tube type for diffusion experiments at variable temperatures since the narrower tube suppresses convection effectively. For evaluating the properties of hydrogen bonding, diffusion coefficients of the $K^+$-complexed and free valinomycin in a micro tube have been determined at various temperatures. From the analysis of the obtained diffusion coefficient values, we could conclude that the intramolecular hydrogen bonding in both of the $K^+$ complexed and free valinomycin in a non-polar solvent is preserved over the observed temperature range, and the temperature dependence of hydrogen bonding is more pronounced in free valinomycin. It is also thought that there is no big change in the radius of the $K^+$-complexed as temperature is varied, and the ratio of overall radius, $r_{complex}/r_{free}$ is slightly decreased as temperature rises.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.