DOI QR코드

DOI QR Code

Temperature Dependent Self-Diffusion Coefficients of Valinomycin and the Potassium-Valinomycin Complex

  • Published : 2008.06.20

Abstract

Convection effect in liquids has been one of the main targets to be overcome in pulsed-field-gradient NMR measurements of self-diffusion coefficients since the temperature gradient along the sample tube generated by the heating and/or cooling process causes the effect, resulting in additional diffusion. It is known that the capillary is the most appropriate tube type for diffusion experiments at variable temperatures since the narrower tube suppresses convection effectively. For evaluating the properties of hydrogen bonding, diffusion coefficients of the $K^+$-complexed and free valinomycin in a micro tube have been determined at various temperatures. From the analysis of the obtained diffusion coefficient values, we could conclude that the intramolecular hydrogen bonding in both of the $K^+$ complexed and free valinomycin in a non-polar solvent is preserved over the observed temperature range, and the temperature dependence of hydrogen bonding is more pronounced in free valinomycin. It is also thought that there is no big change in the radius of the $K^+$-complexed as temperature is varied, and the ratio of overall radius, $r_{complex}/r_{free}$ is slightly decreased as temperature rises.

Keywords

References

  1. M. Lin, M. Shapiro, J. Org. Chem., 61, 7617 (1996) https://doi.org/10.1021/jo961315t
  2. S. W. Jeong, D. F. O'Brein, Langmuir, 18, 1073 (2002) https://doi.org/10.1021/la011173k
  3. H. Ihre, A. Hult, E. Soderlind. J. Am. Chem. Soc., 118, 6388 (1996) https://doi.org/10.1021/ja954171t
  4. L. Avra, Y. Cohen, J. Am. Chem. Soc., 124, 15148 (2002) https://doi.org/10.1021/ja0272686
  5. L. Avra, Y. Cohen, Org. Lett., 5, 1099 (2003) https://doi.org/10.1021/ol034156q
  6. G. S. Kapur, E. J. Cabrita, S. Berger, Tetrahedron Lett., 41, 7181 (2000) https://doi.org/10.1016/S0040-4039(00)01188-6
  7. N. M. Loening, J. Keeler, J. Magn. Reson., 139, 334 (1999) https://doi.org/10.1006/jmre.1999.1777
  8. A. Jerschow, J. Magn. Reson., 145, 125 (2000) https://doi.org/10.1006/jmre.2000.2083
  9. N. Hedin, I. Furo, J. Magn. Reson., 131, 126 (1998) https://doi.org/10.1006/jmre.1997.1352
  10. J. Lounila, K. Oikarinen, P. Ingman, J. Jokisaari, J. Magn. Reson. A, 118, 50 (1996) https://doi.org/10.1006/jmra.1996.0008
  11. W. J. Goux, L. A. Verkruyse, S. J. Saltert, J. Magn. Reson., 88, 609 (1990) https://doi.org/10.1016/0022-2364(90)90292-H
  12. K. Hayamizu, W. S. Price, J. Magn. Reson., 167, 328 (2004) https://doi.org/10.1016/j.jmr.2004.01.006
  13. B. C. Pressman, Fed. Proc., 27, 1283 (1968)
  14. W. L. Duax, H. Hauptman, C. M. Weeks, D. A. Norton, Science, 176, 911 (1972) https://doi.org/10.1126/science.176.4037.911
  15. M. Ohnish, D. W. Urry, Biochem. Biophys. Res. Commun., 36, 194 (1969) https://doi.org/10.1016/0006-291X(69)90314-3
  16. M. Ohnish, D. W. Urry, Science, 168, 1091 (1970) https://doi.org/10.1126/science.168.3935.1091
  17. G. S. Kapur, E. J. Eurico, J. Cabrita, S. Berger, Tetrahedron Letters, 41, 7181 (2000) https://doi.org/10.1016/S0040-4039(00)01188-6
  18. C. S. Johnson, Prog. Nucl. Magn. Reson. Spectrosc., 34, 203 (1999) https://doi.org/10.1016/S0079-6565(99)00003-5
  19. E. Martininez, P. S. Pregosin, Helv. Chim. Acta., 86, 2364 (2003) https://doi.org/10.1002/hlca.200390190