• Title/Summary/Keyword: good compressive strength

Search Result 544, Processing Time 0.023 seconds

Experimental investigation for partial replacement of fine aggregates in concrete with sandstone

  • Chandar, K. Ram;Gayana, B.C.;Sainath, V.
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.243-261
    • /
    • 2016
  • This research study focuses on utilizing sandstone which is overburden waste rock in coal mines to use in concrete as a replacement of fine aggregate. Physical properties of sandstone like water absorption, moisture content, fineness modulus etc., were found to be similar to conventional fine aggregate. Scanning Electron Microscope (SEM) analysis was carried out for analysing elemental composition of sandstone. There was no sulphur content in sandstone which is a good sign to carry the replacement. Fine aggregate was replaced with sandstone at 25%, 50%, 75% and 100% by volume and moulds of concrete cubes and cylinders were prepared. Compressive strength of concrete cubes was tested after 3, 7 and 28 days and split tensile & flexural strength was determined after 28 days. The strength was found to be increasing marginally with increase in sandstone content. Fine aggregate that was replaced by 100% sandstone gave highest strength among all the replacements for the compressive, split tensile and flexural strengths. Though increase in strength was marginal, still sandstone can be an effective replacement for sand in order to save the natural resource and utilize the waste sandstone.

Static push-out test on steel and recycled tire rubber-filled concrete composite beams

  • Han, Qing-Hua;Xu, Jie;Xing, Ying;Li, Zi-Lin
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.843-860
    • /
    • 2015
  • Recycled tire rubber-filled concrete (RRFC) is employed into the steel-concrete composite structures due to its good ductility and crack resistance. Push-out tests were conducted to investigate the static behavior of steel and rubber-filled concrete composite beam with different rubber mixed concrete and studs. The results of the experimental investigations show that large studs lead a higher ultimate strength but worse ductility in normal concrete. Rubber particles in RRFC were shown to have little effect on shear strength when the compressive strength was equal to that of normal concrete, but can have a better ductility for studs in rubber-filled concrete. This improvement is more obvious for the composite beam with large stud to make good use of the high strength. Besides that the uplift of concrete slabs can be increased and the quantity and width of cracks can be reduced by RRFC efficiently. Based on the test result, a modified empirical equation of ultimate slip was proposed to take not only the compressive strength, but also the ductility of the concrete into consideration.

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete (하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.213-221
    • /
    • 2016
  • Uniaxial compression tests for ultra-high performance hybrid steel fiber reinforced concrete (UHPC) were performed to evaluate the compressive behavior of UHPC. The UHPC for testing contains hybrid steel fibers with a predetermined ratio using a length of 19 mm and 16 mm straight typed steel fibers. Test parameter was determined as a fiber volume ratio to investigate the effect of fiber volume ratio on the strength and secant modulus of elasticity. Test results showed that the compressive strength and elastic modulus of UHPC increased with increasing the fiber volume ratio. Based on the test results, the compressive strength and modulus of elasticity equations were proposed as function of the compressive strength of unreinforced and fiber reinforced UHPC, respectively. The simplified equations for predicting the mechanical properties of the UHPC were a good agreement with the test data. The proposed equations are expected to be applied to the SFRC and UHPC with steel fibers.

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Permeability Concrete (섬유보강 투수 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 이봉춘;조청휘;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.665-670
    • /
    • 2000
  • In this study mechanical properties of various fiber reinforced permeability concrete mixtures are investigated. Several mixes with fiber kinds(steel fiber, polyprophylen fiber, carbon fiber) and different fiber content(steel fiber : 0.3~0.9vol.%, polyprophylen fiber : 0.1~0.5vol.%, carbon fiber : 0.2~0.7vol.%) were studied. Test results are presented in terms of compressive strength, tensile-flexural strength and load-deflection behavior. The effect of fiber reinforcement does not increase the compressive strength of permeability concrete without fiber. Also, the tensile-flexural strength using various fibers are appeared good strength increase as conventional fiber reinforced concrete. Therefore, use of fiber for permeability concrete is necessary to improve of tensile-flexural properties and deformation performance(toughness).

  • PDF

A study on the Fundamental Properties of Concrete with Belite Cement (벨라이트시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;문대중;하상욱;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.167-170
    • /
    • 1998
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and high quality concrete is necessary for them. Nowadays, the proposal of using belite rich cement is investigated to satisfy high flowing, low heat, and high strength. In this study, the height difference, the falling time and the maximum temperature of concrete using BRC were lower than that of concrete using OPC. Furthermore the compressive strength of concrete using BRC with and without compacting was not different. And the compressive strength of core specimens was higher than that of specimens in water curing. Compared to OPC, there was a good relationship between the curing temperature and the development of strength in BRC.

  • PDF

A Practial use Study on Early Strength Estimation of Concrete with Microwave (마이크로파를 콘크리트강도추정에 활용하는 방안에 관한 연구)

  • Kim, Min-Suk;Kim, Byong-Chun;Park, Min-Su;Lee, Jong-Kyun;Ahn, Hyung-Jun;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.223-228
    • /
    • 2000
  • Although construction company try to get good quality control it's enough to study about developing objective evaluation method and checking quality method. It is important to meaning concrete quality at placing point, immediate quality checking method is limited. The purpose of this study is to develop new method to know early 28-day concrete for getting faithful quality control. The results of this study are as follows :1) With sealed molds, reduced moisture volatilization to more than 50% and enlarged 20% accelerated compressive strength than before one. 2) Accelerated compressive strength of concrete specimen shows higher strength when it was in the air for long time 3)Interrelation with 7-day and 28-day strength were 0.781,0.90, It is higher than before one

  • PDF

A Experimental Study on Characteristic of Polymer Concrete Using Recycled PET Waste (폐PET를 재활용한 폴리머 콘크리트 특성에 관한 실험적 연구)

  • 조병완;구자갑;박승국;나선권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.840-845
    • /
    • 2003
  • Polymer concrete (PC) using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its mechanical properties such as compressive strength, tensile strength and flexural strength, etc. by changing its quantity of resin, filler and dilution(SM) respectively. As a result of it, compressive, tensile and flexural strength of PC indicated 752kgf/$cm^2$, 80kgf/$cm^2$, and 243kgf/$cm^2$, kind of satisfaction successively. Judging from the above results, polymer concrete (PC) using unsaturated polyester resins as a coupling are suitable for construction material both in the aspect of ECO-building materials and in the aspect of superior strength of PC so that it is good possibility of success as a product.

  • PDF