• Title/Summary/Keyword: goal detection

Search Result 292, Processing Time 0.031 seconds

Development of Damage Evaluation Technology Considering Variability for Cable Damage Detection of Cable-Stayed Bridges (사장교의 케이블 손상 검출을 위한 변동성이 고려된 손상평가 기술 개발)

  • Ko, Byeong-Chan;Heo, Gwang-Hee;Park, Chae-Rin;Seo, Young-Deuk;Kim, Chung-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2020
  • In this paper, we developed a damage evaluation technique that can determine the damage location of a long-sized structure such as a cable-stayed bridge, and verified the performance of the developed technique through experiments. The damage assessment method aims to extract data that can evaluate the damage of the structure without the undamage data and can determine the damage location only by analyzing the response data of the structure. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To evaluate the performance of the developed technique experimentally, cable damage experiments were conducted on model cable-stayed bridges. As a result, the damage assessment method considering variability automatically outputs the damageless data according to external force, and it is confirmed that the performance of extracting information that can determine the damage location of the cable through the analysis of the outputted damageless data and the measured damage data is shown.

Image Analysis on Upper Gastrointestinal(UGI) Series of Gastric Cancer (위암환자의 위장조영검사 영상분석)

  • Ko, Ju-Young;Cho, Young-Ki;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.251-258
    • /
    • 2010
  • Despite significant advance in laparoscopy, upper gastrointestinal (UGI) series is still generally carried out for preoperative localization of gastrectomy. The aim of the study was to compare the accuracy of UGI series and postoperative pathological findings in the diagnosis and localization of gastric cancer. A retrospective review was carried out for 102 patients who underwent gastrectomy between October 2007 and April 2009. Preoperative reports of UGI series were compared with postoperative pathology reports and the accuracy of the preoperative reports was calculated. Two radiographer retrospectively reviewed the analysis of UGI series. postoperative pathology reports of the surgical specimens, were compared with the preoperative reports of the location and extent of the tumor were correct in 81 case("sure", 79.4%) and incorrect in 21 case("failed, 20.6%). In 92 case UGI series revealed intestinal metaplasia (90.2%) at consensus review and these results demonstrate the limitation of the UGI series in the diagnosis of type IIb gastric cancer with size less than 1.0cm and the poor detection of gastric cancer is that the overlying mucous membrane often appears to be normal in these patients. In conclusion, UGI series is accurate the detection of the tumor localization and diagnosis of intestinal metaplasia. However, for the overcome with the limitation of UGI series should be used accurate technique for the region of the stomach. To achieve this goal, it is necessary to determine the changes of the mucus membrane of the stomach and UGI series is gaining acceptance as a standard method for preoperative gastric cancer screening.

Improving a Korean Spell/Grammar Checker for the Web-Based Language Learning System (웹기반 언어 학습시스템을 위한 한국어 철자/문법 검사기의 성능 향상)

  • 남현숙;김광영;권혁철
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.3
    • /
    • pp.1-18
    • /
    • 2001
  • The goal of this paper is the pedagogical application of a Korean Spell/Grammar Checker to the web-based language learning system for Korean writing. To maximize the efficient instruction of our learning system \\`Urimal Baeumteo\\` we have to improve our Korean Spell/Grammar Checker. Today the NLP system\\`s performance defends on its semantic processing capability. In our Korean Spell/Grammar Checker. the tasks accomplished in the semantic level are: the detection and correction of misused derived and compound nouns in a Korean spell-checking device and the detection and correction of syntactic and semantic errors in a Korean grammars-checking device. We describe a common approach to the partial parsing using collocation rules based on the dependency grammar. To provide more detailed semantic rules. we classified nouns according to their concepts. and subcategorized verbs referring to their syntactic and semantic features. Improving a Korean Spell/Gl-Grammar Checker makes our learning system active and intelligent in a web-based environment. We acknowledge the flaws in our system: the classification of nouns based on their meanings and concepts is a time consuming task. the analytic unit of this study is principally limited to the phrases in a sentence therefore the accurate parsing of embedded sentences remains a difficult problem to solve. Concerning the web-based language learning system. it is critically important to consider its interface design and structure of its contents.

  • PDF

Endpoint Detection in Semiconductor Etch Process Using OPM Sensor

  • Arshad, Zeeshan;Choi, Somang;Jang, Boen;Hong, Sang Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.237.1-237.1
    • /
    • 2014
  • Etching is one of the most important steps in semiconductor manufacturing. In etch process control a critical task is to stop the etch process when the layer to be etched has been removed. If the etch process is allowed to continue beyond this time, the material gets over-etched and the lower layer is partially removed. On the other hand if the etch process is stopped too early, part of the layer to be etched still remains, called under-etched. Endpoint detection (EPD) is used to detect the most accurate time to stop the etch process in order to avoid over or under etch. The goal of this research is to develop a hardware and software system for EPD. The hardware consists of an Optical Plasma Monitor (OPM) sensor which is used to continuously monitor the plasma optical emission intensity during the etch process. The OPM software was developed to acquire and analyze the data to perform EPD. Our EPD algorithm is based on the following theory. As the etch process starts the plasma generated in the vacuum is added with the by-products from the etch reactions on the layer being etched. As the endpoint reaches and the layer gets completely removed the plasma constituents change gradually changing the optical intensity of the plasma. Although the change in optical intensity is not apparent, the difference in the plasma constituents when the endpoint has reached leaves a unique signature in the data gathered. Though not detectable in time domain, this signature could be obscured in the frequency spectrum of the data. By filtering and analysis of the changes in the frequency spectrum before and after the endpoint we could extract this signature. In order to do that, first, the EPD algorithm converts the time series signal into frequency domain. Next the noise in the frequency spectrum is removed to look for the useful frequency constituents of the data. Once these useful frequencies have been selected, they are monitored continuously in time and using a sub-algorithm the endpoint is detected when significant changes are observed in those signals. The experiment consisted of three kinds of etch processes; ashing, SiO2 on Si etch and metal on Si etch to develop and evaluate the EPD system.

  • PDF

Acoustic Monitoring and Localization for Social Care

  • Goetze, Stefan;Schroder, Jens;Gerlach, Stephan;Hollosi, Danilo;Appell, Jens-E.;Wallhoff, Frank
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Increase in the number of older people due to demographic changes poses great challenges to the social healthcare systems both in the Western and as well as in the Eastern countries. Support for older people by formal care givers leads to enormous temporal and personal efforts. Therefore, one of the most important goals is to increase the efficiency and effectiveness of today's care. This can be achieved by the use of assistive technologies. These technologies are able to increase the safety of patients or to reduce the time needed for tasks that do not relate to direct interaction between the care giver and the patient. Motivated by this goal, this contribution focuses on applications of acoustic technologies to support users and care givers in ambient assisted living (AAL) scenarios. Acoustic sensors are small, unobtrusive and can be added to already existing care or living environments easily. The information gathered by the acoustic sensors can be analyzed to calculate the position of the user by localization and the context by detection and classification of acoustic events in the captured acoustic signal. By doing this, possibly dangerous situations like falls, screams or an increased amount of coughs can be detected and appropriate actions can be initialized by an intelligent autonomous system for the acoustic monitoring of older persons. The proposed system is able to reduce the false alarm rate compared to other existing and commercially available approaches that basically rely only on the acoustic level. This is due to the fact that it explicitly distinguishes between the various acoustic events and provides information on the type of emergency that has taken place. Furthermore, the position of the acoustic event can be determined as contextual information by the system that uses only the acoustic signal. By this, the position of the user is known even if she or he does not wear a localization device such as a radio-frequency identification (RFID) tag.

Image Registration and Fusion between Passive Millimeter Wave Images and Visual Images (수동형 멀리미터파 영상과 가시 영상과의 정합 및 융합에 관한 연구)

  • Lee, Hyoung;Lee, Dong-Su;Yeom, Seok-Won;Son, Jung-Young;Guschin, Vladmir P.;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.349-354
    • /
    • 2011
  • Passive millimeter wave imaging has the capability of detecting concealed objects under clothing. Also, passive millimeter imaging can obtain interpretable images under low visibility conditions like rain, fog, smoke, and dust. However, the image quality is often degraded due to low spatial resolution, low signal level, and low temperature resolution. This paper addresses image registration and fusion between passive millimeter images and visual images. The goal of this study is to combine and visualize two different types of information together: human subject's identity and concealed objects. The image registration process is composed of body boundary detection and an affine transform maximizing cross-correlation coefficients of two edge images. The image fusion process comprises three stages: discrete wavelet transform for image decomposition, a fusion rule for merging the coefficients, and the inverse transform for image synthesis. In the experiments, various types of metallic and non-metallic objects such as a knife, gel or liquid type beauty aids and a phone are detected by passive millimeter wave imaging. The registration and fusion process can visualize the meaningful information from two different types of sensors.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning (딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.469-481
    • /
    • 2018
  • DL (Deep Learning) is getting popular in various fields to implement artificial intelligence that resembles human learning and cognition. DL based on complicate structure of the ANN (Artificial Neural Network) requires computing power and computation cost. Variety of DL models with improved performance have been developed with powerful computer specification. The main purpose of this paper is to detect buildings from aerial images and evaluate performance of Mask R-CNN (Region-based Convolutional Neural Network) developed by FAIR (Facebook AI Research) team recently. Mask R-CNN is a R-CNN that is evaluated to be one of the best ANN models in terms of performance for semantic segmentation with pixel-level accuracy. The performance of the DL models is determined by training ability as well as architecture of the ANN. In this paper, we characteristics of the Mask R-CNN with various types of the images and evaluate possibility of the generalization which is the ultimate goal of the DL. As for future study, it is expected that reliability and generalization of DL will be improved by using a variety of spatial information data for training of the DL models.

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

A Study on the Fraud Detection in an Online Second-hand Market by Using Topic Modeling and Machine Learning (토픽 모델링과 머신 러닝 방법을 이용한 온라인 C2C 중고거래 시장에서의 사기 탐지 연구)

  • Dongwoo Lee;Jinyoung Min
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.45-67
    • /
    • 2021
  • As the transaction volume of the C2C second-hand market is growing, the number of frauds, which intend to earn unfair gains by sending products different from specified ones or not sending them to buyers, is also increasing. This study explores the model that can identify frauds in the online C2C second-hand market by examining the postings for transactions. For this goal, this study collected 145,536 field data from actual C2C second-hand market. Then, the model is built with the characteristics from postings such as the topic and the linguistic characteristics of the product description, and the characteristics of products, postings, sellers, and transactions. The constructed model is then trained by the machine learning algorithm XGBoost. The final analysis results show that fraudulent postings have less information, which is also less specific, fewer nouns and images, a higher ratio of the number and white space, and a shorter length than genuine postings do. Also, while the genuine postings are focused on the product information for nouns, delivery information for verbs, and actions for adjectives, the fraudulent postings did not show those characteristics. This study shows that the various features can be extracted from postings written in C2C second-hand transactions and be used to construct an effective model for frauds. The proposed model can be also considered and applied for the other C2C platforms. Overall, the model proposed in this study can be expected to have positive effects on suppressing and preventing fraudulent behavior in online C2C markets.