• Title/Summary/Keyword: global positioning system (GPS) measurement

Search Result 174, Processing Time 0.028 seconds

Application of Rapid Static Method on Minor Control Point Surveying Using the Global Positioning System (GPS측량기를 이용한 고속스테틱법에 의한 공공기준점 측량 및 응용)

  • 최윤수;김경진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.195-206
    • /
    • 1997
  • By this time, in order to measure baseline in a few minutes, we must have used expensive dual frequency receiver. Recently, low-priced single frequency receiver have taken place of dual frequency receiver at short base-line by advancement in software development, improvements in geodetic survey receiver system. In this study, according to the observation time and measurement interval, we analyzed differences of each components of baseline by field experiment and we propose the criterion for the minor control point surveying by single frequency GPS receiver.

  • PDF

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

Precision Positioning of a Stationary Transporter Using a Fault Detection and Isolation Method (정적 상태의 이동체 위치 정밀도 향상을 위한 오류 검출 및 배제 기법)

  • An, Jong-Woo;Kim, Yun-Ki;Lee, Jae-Kyung;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.859-868
    • /
    • 2016
  • This paper proposes a new global positioning system (GPS) receiver algorithm to improve the positioning accuracy of a transporter using fault detection and isolation techniques from satellite signals. To improve the positioning accuracy, several factors including a feasible number of satellite signals, SNR, NAV Measurement Quality Indicator (mesQI), and Doppler, among others, have been utilized in the proposed algorithm. To increase the number of feasible satellite signals, an erroneous satellite signal has been replaced by the previous one. In conventional approaches, received GPS signals are analyzed and directly determined to be contaminated or not. The only clean signals are utilized for identifying the current location. This fault detection and isolation (FDI) feasibility test is popular for commercial GPS receivers. In the urban environment, especially near a building, the feasible number of satellite signals becomes insufficient to position the transporter. To overcome this problem, satellite signals are efficiently selected and recovered. Additionally, using the proposed GPS receiver algorithm, a feasible number of satellite signals can be increased, thereby improving the positional accuracy. Real world experiments using a transporter that carries blocks in a shipyard have demonstrated the superiority of the proposed algorithm compared to conventional approaches.

A Performance Improvement on Navigation Applying Measurement Estimation in Urban Weak Signal Environment (도심에서의 측정치 추정을 적용한 항법성능 향상 연구)

  • Park, Sul Gee;Cho, Deuk Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2745-2752
    • /
    • 2014
  • In recent years, Transport Demand Management has been conducted for the efficient management of transport. In ITS applications in particular, the prerequisite is accurate and reliable positioning. However, the major problems are satellite signal outage, and multipath. This paper proposes that outage and multipath measurement can be detected and estimated using elevation angle and signal to noise ratio data association relation in stand-alone GPS. In order to verify the performance of the proposed method, it is then evaluated by the car test. the evaluation test environment has low accuracy and unreliable positioning because of signal outage or multipath such as steep hill and high buildings. In the evaluation test result, 918times abnormal signal occurred and it was confirmed that the proposed method showed more improved 9.48m(RMS) horizontal positioning error than without proposed method.

Measurement and Analysis of the Korean NDGPS Radiation Spectrum

  • Kim, Young-Wan;Jee, Suk-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • The Korean nationwide differential global positioning system (NDGPS) reference station transmits a global positioning system (GPS) enhancement signal using minimum shift keying modulation with a 200 bps data rate. The ocean-based DGPS covers the service area of 100 NM with 300 W output power; on the other hand, the land-based DGPS transmits the output power of 500 W, which covers the service area of 100 km. The DGPS reference stations with high output power can radiate spurious signals, which may act as interference sources affecting the other DGPS reference stations or the wireless ground stations that utilize the medium frequency band. In this paper, the radiation spectrums of the DGPS reference stations are measured and analyzed in the spurious domain. The DGPS radiation spectrums are evaluated from the perspective of the interference effect.

GPS Pull-In Search Using Reverse Directional Finite Rate of Innovation (FRI)

  • Kong, Seung-Hyun;Yoo, Kyungwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 2014
  • When an incoming Global Positioning System (GPS) signal is acquired, pull-in search performs a finer search of the Doppler frequency of the incoming signal so that phase lock loop can be quickly stabilized and the receiver can produce an accurate pseudo-range measurement. However, increasing the accuracy of the Doppler frequency estimation often involves a higher computational cost for weaker GPS signals, which delays the position fix. In this paper, we show that the Doppler frequency detectable by a long coherent auto-correlation can be accurately estimated using a complex-weighted sum of consecutive short coherent auto-correlation outputs with a different Doppler frequency hypothesis, and by exploiting this we propose a noise resistant, low-cost and highly accurate Doppler frequency and phase estimation technique based on a reverse directional application of the finite rate of innovation (FRI) technique. We provide a performance and computational complexity analysis to show the feasibility of the proposed technique and compare the performance to conventional techniques using numerous Monte Carlo simulations.

Implementation of Biosignal Mornitoring System for u-Health (유헬스를 위한 생체신호 모니터링 시스템의 구현)

  • Kim, Kyung Ho;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.80-84
    • /
    • 2014
  • As an integrated technology with IT and biomedical sciences, U-health offers various healthcare services without time and space limit. In order to make a proper diagnosis, doctors need two key technologies: biosignal measurement and high reliability communication technologies. In this paper, we introduce an implementation process of a bio signal system with using an electrocardiography(ECG) sensor, video, global positioning system(GPS), communication module and micro controller unit(MCU).

Performance Improvement of the Wald Test for GPS RTK with the Assistance of INS

  • Abdel-Hafez, Mamoun F.;Kim, Dae-Je;Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tae-Sam;Sung, Sang-Kyung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.534-543
    • /
    • 2008
  • To use the Global Positioning System (GPS) carrier phase measurement for precise positioning, the integer ambiguities at the early stage of most algorithms must be determined. Furthermore, if a precise positioning is to be applied to real time navigation, fast determination and validation methods for integer ambiguity are essential. In this paper, the Wald test that simultaneously determines and validates integer ambiguities is used with assistance of the Inertial Navigation System (INS) to improve its performance. As the Wald test proceeds, it assigns a higher probability to the candidate that is considered to be true at each time step. The INS information is added during the Wald test process. Large performance improvements were achieved in convergence time as well as in requiring fewer observable GPS satellites. To test the performance improvement of the Wald test with the INS information, experimental tests were conducted using a ground vehicle. The vehicle moved in a prescribed trajectory and observed seven GPS satellites. To verify the effect of the INS information on the Wald test, the convergence times were compared with cases that considered the INS information and cases that did not consider the INS information. The results show that the benefits of using the INS were emphasized as fewer GPS satellites were observable. The performance improvement obtained by the proposed algorithm was shown through the fast convergence to the true hypothesis when using the INS measurements.

Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter (최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소)

  • Eom, Hyeon-Seob;Kim, Ji-Yen;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.