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Performance Improvement of the Wald Test for GPS RTK
with the Assistance of INS

Mamoun F. Abdel-Hafez, Dae Je Kim, Eunsung Lee, Sebum Chun,
Young Jae Lee*, Taesam Kang, and Sangkyung Sung

Abstract: To use the Global Positioning System (GPS) carrier phase measurement for precise
positioning, the integer ambiguities at the early stage of most algorithms must be determined.
Furthermore, if a precise positioning is to be applied to real time navigation, fast determination
and validation methods for integer ambiguity are essential. In this paper, the Wald test that
simultaneously determines and validates integer ambiguities is used with assistance of the
Inertial Navigation System (INS) to improve its performance. As the Wald test proceeds, it
assigns a higher probability to the candidate that is considered to be true at each time step. The
INS information is added during the Wald test process. Large performance improvements were
achieved in convergence time as well as in requiring fewer observable GPS satellites. To test the
performance improvement of the Wald test with the INS information, experimental tests were
conducted using a ground vehicle. The vehicle moved in a prescribed trajectory and observed
seven GPS satellites. To verify the effect of the INS information on the Wald test, the
convergence times were compared with cases that considered the INS information and cases that
did not consider the INS information. The results show that the benefits of using the INS were
emphasized as fewer GPS satellites were observable. The performance improvement obtained by
the proposed algorithm was shown through the fast convergence to the true hypothesis when

using the INS measurements.
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1. INTRODUCTION

A wide range of GPS applications require achieving
centimeter-level accuracy. For those applications, GPS
carrier phase measurements are very promising tools.
Therefore, significant contributions have been made
to obtain fast, reliable methods to fix carrier phase
integer ambiguity. Once this integer ambiguity is
resolved, the carrier phase measurements can be used
as high accuracy range measurements.
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During the last decade, many integer ambiguity
resolving methods have been proposed, and
Teunissen’s least-squares ambiguity decorrelation
adjustment (LAMBDA) method has been the most
popular. This method is known to be efficient in
processing data using a very efficient transformation
[1] and must be followed by an integer ambiguity
validation process after the integer ambiguity is
estimated as in most integer ambiguity fixing methods.
However, the multiple hypotheses Wald sequential
probability ratio test (MHWSPRT) is a method that
validates integer ambiguity during the initial
ambiguity resolution [2]. For convenience, hereafter
the Wald test refers to MHWSPRT. The Wald test has
been found to be a very efficient method to converge
to the correct integers. This method is essentially a
nonlinear sequential filter which, after conditioning
the measurements, is optimal [3].

It is well known that the characteristics of GPS and
INS are very much distinguishable: the strong point of
one system is the weak point of the other [4]. INS has
characteristics of error accumulation, anti-interference,
self-operability, short time stability, and a high data
rates. For this reason, during the last two decades,
there have been many attempts to use and obtain
synergistic effects between GPS and INS. Velocity
and position information from GPS are used to obtain
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ideal performance from INS [5]. Traditionally, an
integrated INS/GPS has been executed in a loosely or
tightly coupled method through the Kalman filter [6].
For example, the GPS/INS alignment errors can be
made observable by maneuvering a vehicle based on
the observability analysis of the time-varying system
[7]. The loosely coupled method and the combination
of the fast ambiguity search filter (FASF) and
LAMBDA methods have been used for ambiguity
resolution in real time kinematic (RTK) satellite
navigation [8]. As a possible alternative, a cheaper and
poorer quality INS may be investigated. A combina-
tion of the FASF methods has been used for ambiguity
resolution in the RTK navigation system. Furthermore,
a neural network has been applied for multi-sensor
integration, which suggests a multi-sensor integration
approach to fuse data from an INS and a DGPS using
multi-layer feed-forward neural networks with a back
propagation learning algorithm [9].

The GPS integer ambiguity fixing problem consists
of two distinct parts: the ambiguity estimation
problem and the ambiguity validation problem [1].
The first part determines the optimal estimation for
unknown variables using observation equation models.
The second part validates the estimated ambiguities
and determines whether the estimated integer
ambiguity solution from the first part is accepted or
not. In most cases, the second part is independent of
the estimation and is extremely important for safety
sensitive applications.

However, the Wald test is a method that estimates
the initial ambiguity and simultaneously validates the
integer ambiguity [2]. In [2] and [3], it has been
shown that the Wald test is a well-proven and efficient
integer ambiguity resolution algorithm and that the
biggest advantage of the Wald sequential test is that it
has one simple unified step for the estimation and
validation of the integer ambiguities of GPS carrier
phase measurements.

The objective of this paper is to improve the
performance of the Wald test in resolving the integer
ambiguity of GPS carrier phase measurements with
the assistance of INS measurements. The proposed
algorithm consists of three parts: the initial
positioning using GPS code information, integrating
the GPS and INS information, and determining the
integer ambiguity using the Wald test. As a result, we
can observe the direct contribution of the INS
information to the Wald test in a short convergence
time and in a functional capability of fewer observable
satellites.

In Section 2, a brief review of the Wald test is
presented. In Section 3, the proposed GPS and INS
integration is explained in detail. To prove the
effectiveness of the developed algorithm, experiments
were conducted and the results are analyzed in Section
4. Finally, the conclusions are summarized in Section 5.

2. THE WALD TEST

The Wald test is a special case of the multiple
hypothesis Shiryayev sequential probability ratio test:
it determines the most likely event from a set of
hypotheses assuming that the event is true for all time.
The Wald test can be used to obtain the conditional
probability that each integer ambiguity under
consideration is true. Hence, the Wald test is a
statistical method used to validate integer ambiguity.
The method forms residuals that are used to obtain the
probability of a certain integer hypothesis being the
correct integer ambiguity [2]. For more details, refer
to [2] and [3].

F;(k), which is the possibility of the ith integer
ambiguity N; being true given R(k), is defined as:

Fy(k) = p(N;|R(k)), (1)

where the R(k) is the measurement residual history
until time &, and i (i=I..m) is the index of the

hypotheses. F;(k) is the probability that the ith

integer ambiguity is true given the set of residual R(k).
Using (1) and Bayes’ rule, (2) is derived as follows:

P(Nl-,r(k)lR(k—l))
P(r (k)| RGk-1))

Fk)= o)

where (k) is the measurement residual vector at time
k. The numerator of (2) can be expressed as in (3):

P(N,,r(k)|R(k ~1))

3
= P(r(k)|N;, R(k ~1))- P(N; |R(k - 1)), ®

where #(k) is independent and has the same
distribution (iid). Hence, the right side of (3) is
described as:

P(r(0)|N;,R(k - 1)) = P(r(k)|N; )= f;(r(k)), (4)
P(N;|R(k-1)) = F(k -1). (5)

Substituting (3) into (4), (5) becomes:
P(Nl-,r(k)'R(k——l))=fl~(r(k))-F,-(k—1), (6)
The denominator of (2) is described as:

P(r(k)|R(k-1)) = B (r(k))

i
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Substituting (2) into (6), (7) is derived as follows:

R -0 ) ®

D F =)y (1)

where f{(r(k)) is the probability density function of a
residual vector calculated by the ith candidate of the
integer ambiguity. By the Gaussian distribution
assumption of r(k), fi(r(k)) is described as:

fi(r))=C- exp{—%n(k)T Wrri(k)}, ©

; 0
where C'is a factor, O, = {Qca(;”er 0 }, and
GPS/INS

W, =0

Using (8), the Wald test computes the probability
that a candidate integer is a true integer. After starting
with an initial condition that all the candidates have
the same probability, the Wald test assigns a higher
probability to the highly-seeming-to-be-true integer as
it processes the measurement residuals and a lower
probability to other integers. From the definition of
probability, it is always true that summing all
probabilities assigned to all candidates results in one
[10]. The Wald test declares one true integer when its
probability reaches a predefined threshold very close
to one, for example 0.999. In this case, the other
integers are very close to zero. For the real-time use of
GPS carrier phase measurements for precise position
areas, the time taken to reach the threshold is very
important for performance as an integer ambiguity
resolution algorithm.

3. GPS/INS INTEGRATED SYSTEM

The proposed GPS/INS integrated algorithm is
divided into three modules as shown in Fig. 1. The
first module computes the initial position of the
mobile user using GPS code measurements. The
second module has a Kalman filter which computes
the mobile position and INS errors using the results of
the first module and the inertial measurements of the
INS. The last module combines the results from
Module 2 and the GPS carrier measurements. This
generates the estimated GPS measurements from the
results of the second module and finally fixes the
integer ambiguity using the Wald test.

The first module of the proposed algorithm
computes the initial position of the mobile user using
a conventional DGPS process. The resulting initial
position is used as the initial position of the INS and
the initial condition of the integrated GPS/INS filter.
Hereafter, “A” denotes the known reference point and

...................................

Double
difference

Position

WALD TEST | )

Procassor of

Estimated
GPS Measurement

Fig. 1. Block diagram of an integrated system.

“B” denotes the unknown mobile position. Using the
GPS code measurements, Module 1 computes the
mobile position. The measurements equation is as
follows:

Py = =22+~ 5p) + (2 —25) v,
(10)

where pj is the distance between the mobile unit

and the satellites using code measurements, x', yi .z
are the coordinates of the ith satellite, Xz, Py, 2
are the estimated coordinates of the mobile using code
measurements, and vg is the GPS code

measurement noise.

Two key processes are performed in Module 2 as
seen in Fig. 2. The first key process estimates the
position and velocity of the mobile user using IMU
measurements. The second estimates the errors of the
state variables using the Kalman filter, and these
errors are fed back into the first process to compensate
the resulting position and velocity. The measurements
of the Kalman filter are the difference between the
position and the velocity from the GPS and INS. The
state variables of the filter are position, velocity,
altitude, and inertia sensor biases. The initial
alignment is conducted statically at the beginning of
the process and is designed to start before the inertial
navigation begins. Equation (11) is the system
equation of the Kalman filter. The state variables are
position error, velocity error, altitude error, and inertia
sensor biases with respect to the north, east, and down
directions.

NAVIGATION COMPUTER

AV
STRAPDOWN P
™MU INERTIAL V
Af NAVIGATION é

Correction!
Data P
i PGPS
GPS Receiver KALMAN FILTER
 E———

Fig. 2. Structure of the Kalman filter in module 2.
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Xnav _ P}l Fiz Xnav + Wyay
Xsensor O6><9 06x6 Xsensor 0 ,
Woav ~ N(O, Q)a
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where ( is a covariance matrix of the process noise,
Opy. Opg, Opp are the position errors in the NED

coordinates, dvy, Ovg, ovp are the velocity errors
in the NED coordinates, Syy, Sy, dyp are the
altitude errors in  the NED  coordinates,
Sfy. 0fg, 8fp are the accelerometer biases in the
body coordinates, and ey, deg, dsp are the gyro
biases in the body coordinates.

C} is the direction cosine matrix from the body to

the navigation coordinates, R, is the radius of the
Earth, vy, vi, vp are the velocity of north, east and
down directions, Q is the earth rotation rate, L is
longitude, 4 is height, g, is the Earth’s gravity, and fy,
J& fp are specific forces [11].

Equation (12) is the measurement equation of the
filer, which uses the differenced position solutions
from the GPS and INS.

z=Hx+v, v~N(0O,R),

| Xnay - r
x_L } z_[arN 57y 5;»,3} : (12)

Sensor

H Z[IM 03x12}

where Jry,0rg,0rp are the differenced position

solutions from the GPS and INS in the NED
coordinates and R is the measurement noise
covariance matrix.

Module 3 consists of two parts: the first part

B vetank )
0 ° ‘;g,%‘ft -Rﬁ 1 0
vgtanl Vi
7{,+h 0 1{l+h 0
) Reth ) ;a;;? 0 0
2, 0 0 0 . vetanl Yy
R+h - Apind - s
E= O Rf:k 0 msmv;::]f 0 2wod +
2g, vy
0 0 R Rﬁ 26xod. Re—ih 0
0 0 0 0 0
0 0 0 0
0 0 0 0

outputs the estimated GPS measurements, which is
double the differenced measurements using the
vehicle position estimated in Module 2 and the
received ephemeris data of the observable satellites.
The second part determines the integer ambiguity
using the Wald test with the results of the first part and
the GPS carrier measurements.

At the fixed known reference point A, the GPS
measurement equation using the GPS carrier phase
measurement is explained as follows. In general,
errors in GPS carrier phase measurements include
common and non-common errors. Common errors are
those which have almost identical measurements
between two or more nearby receivers: atmospheric
error, satellite clock error, and satellites ephemeris
error. Other errors are called non-common errors and
include multipath errors and receiver errors [12].

’3‘¢,l4 = pi! +’%Nzl4 +ecomman+gA’ (13)

where ¢, is the carrier measurement, p) is the
true range, N is the integer ambiguity, €.ommon is the
common error, and &4 is the non-common error.

The linearized equation of ‘A’ with respect to an
arbitrary point 4, is derived as in (14):

i i i
X-xy Y-ys  7-zy
- I gy,

i i
}"¢A ~Pg0 =~ i i i
P40 P40 P40
+AN' +e +e
A COMMON A

Pao = \/(xl ~x10)* + O v (@~ 24007
(14)
where dX, is a position vector between point 4 and
point 40. Assuming that position ‘A’ is perfectly
known, dX} is 0. Then, the following equation (15) is
obtained from (14):
M- ply =N} +e,

Omon

+e, (15)

In the same way, the linearized equation of ‘B’ with

0 0
0
0
0 -/p Y 033 033
p 0 iy |\ Fp=| Cp 033
I N 0 033 ~Ch
0 !biui-vER:—j_l: %ﬁ
Cxitd+ V;:i';f 0 Qo +%
o -rot-gy 0 |
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respect to an arbitrary point By is derived as in (16):

i ; X —x i—y 7 -z
’%¢é_plBO: - i B~y i £ i B:!'d)(lb
PBo PBo PBo
+ANg +e,

ommon + &g

PBo = \/(x; —xo) + (¥ = ypo)” + (2 —zp0)",
(16)
where dXpis a position vector between point B and
point By.

For satellites i and j, (17) is the double differenced
measurement equation between two receiver points
‘A’ and ‘B’. After the differencing process, only non-
common errors remain, as follows:

AVAGL, — VA g = Hip - dX g + AVANY  + VAe 4,
VAl =(pho = 24) (b0 - £l).

VANY, = (N - N5 )~ (N - V),

wioo| X =xs X -xp Y-yp ¥y -yp
AB = A - - ~
PBo Pio PBo Pho
i_ J_
z iZB+Z -ZBJ- (17
PBo P[Jg()

Also, (17) can be generalized to (18) with more
satellites:

I=h-dXg+A-N +v,
AVAGGp —Viplis,
1= AVAGLE ~VAplk (18)

Migo| | VANIg
h=|hlko |, N=|vaNZE |,

where [ is a double differenced residual vector, % is a
double differenced observation matrix, N is a double
differenced integer ambiguity, and v is a double
differenced non-common error.

According to (19), the estimated carrier
measurements are computed in Module 3. It is
possible that the estimated GPS carrier measurement
is obtained using the position of the satellites and the
result of Module 2, which estimates the position of the
mobile user using the integration algorithm. Finally,
the new double differenced estimated measurement
equation can be constructed as in (19):

[=h-dfz+A-N, (19)

where dX 5 is the estimated state and N is the

estimated integer ambiguity.
Through the difference between (18) and (19), the
residual vector can be represented as in (20):

rops (1)=(-h-dX g5 - A-N),

0 z[ TGps (’)t)} (20)

TGPS/INS (

where ry(¢) is the GPS residual vector and r(?) is the

residual vector of the integrated GPS/INS. The Wald
test is conducted using (21) and applying the residuals
from (20).

iy - SV e1)
2 Fy k=D £ (r (k)

j=t

Loo\T
—h (k) e (k) :
where f;(r(k))=C-exp 2r( v .0, = [Qcag‘ler
}, and W, =Q7".
QGPS/]NS
4. EXPERIMENTAL RESULTS

To verify the performance of the proposed
algorithm, an experiment was performed in Seoul,
Korea. Fig. 3 shows the INS and GPS receivers used
in the car for the experiment. The data was collected
using the Black Diamond System (BDS), which
includes an OEM4 GPS receiver, a Novatel GPS-600
antenna, and a Honeywell HG-1700 INS. Table 1

Table 1. Specifications of the INS and GPS receiver.

OEM4 (Novatel) HG-1700 (Honeywell)
Position Accuracy: .
1.8m CEP(Single Point ﬁylr %é%%‘: fange'
L1),0.45m CEP(DGPS) | — - Cee/sec
Velocity Accuracy: Accelerometer Range:
0.03m/s RMS t50¢g
Time Accuracy: Output Data Rate:
20ns RMS 100Hz
Data Rate: 20Hz Gyro Bias: 10deg/hr
Measurement Precision:
6cm RMS(L1 C/A Code),| Accelerometer Bias:
0.75mm RMS 1.0 mg
(L1 Carrier Phase)
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shows the specifications of the INS and GPS receiver.

As seen in Fig. 3, one GPS antenna was installed on
the roof rack of the car and the INS was installed
inside the car, Fig. 4 shows the GPS receiver and the
antenna of the reference station. An identical GPS
system was used for the mobile user.

The experiment began with an initial static
alignment of the INS for approximately 460 seconds,
and then it was moved along a preplanned trajectory
twice, as shown in Fig. 5. It took approximately 3
minutes to move around the planned trajectory once.

Fig. 3. GPS and INS for the mobile user.

Fig. 4. GPS unit of the mobile reference station.

Upimeten

-100

East(met 200
(meten North{meter)

Fig. 5. Trajectory of the car during the experiment.

" Tpop
1.051

HDOP "~ P
1.063 g

Fig. 6. Satellite constellation of the observable
satellites.

Fig. 5 shows the trajectory of the car during the
experiment.

Fig. 6 shows the satellite constellation of the
observable GPS satellites at the beginning of the
experiment. The nine visible GPS satellites appeared
at the reference station, while only seven satellites
were available in the mobile station during the
experiment. The observable environment around the
mobile station was not good because there were too
many buildings and trees in the urban area. All data
processing was performed by post-processing, but this
algorithm can be implemented in a real time
environment.

To analyze the performance of the proposed Wald
test algorithm in resolving integer ambiguity with
respect to the number of measurements or dilution of
precision (DOP), the number of observable satellites
was changed from seven to six, and finally to five,
Figs. 7 and 8 show the position DOP (PDOP) and
vertical DOP (VDOP) with respect to the number of
observable satellites.

The results of the Wald test using seven observable
satellites with and without the assistance of INS are

S i
_ 5GPS satellites
| . P
45}
4.
% i
g3 5} -
«
3
r _ 6 GPS satellites
| e
25 t
7 GPS sateliites
== e

2 L 1 L. ) L I Il N L -
0 500 1000 1500 2000 2500 3000 3500 4000
Second

Fig. 7. PDOP.
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&

L 6 GPS satellites ]
BRI T 7 GPS satellites

1.4+ T ~r-:\,\;j 7/

1.3 - k ' : -
O 500 1000 1500 2000 2500 3000 3500 4000

Second

Fig. 8. VDOP.

1

0.9[— / ]
08} l 5
0.7+
{ True Ambiguity

0.6 - "
051

04f ' -

F value of each hypothesis

0.3} ‘ -
99% Probability
at 88 Second

J
P
04 N
/ AN '
05?1 N . o

200 250 300 350 400
Time(sec)

.

Fig. 9. Probability of the hypotheses using only seven
GPS satellites.
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Fig. 10. Probability of the hypotheses using seven
GPS satellites and INS.

shown in Figs. 9 and 10. Although the same
probabilities are assigned to all integer candidates at
the beginning, the results will have different
probabilities as the Wald test sequentially processes
the residuals. As the algorithm propagates, one integer
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Fig. 12. Probability of the hypotheses using six GPS
satellites and INS.

ambiguity, which is likely be true, will have a higher
probability, leaving the remaining candidates with
lower probabilities.

After beginning the experiment, the algorithm
found the correct integer ambiguity after 88 seconds.
Fig. 10 shows the probabilities of the hypotheses,
which were predicted by the proposed algorithm using
GPS and INS measurements. The integer ambiguity
was found in 8 seconds.

Analyses were also performed by changing the
number of visible satellites. For six GPS satellites, Fig.
11 shows that the integer ambiguity was determined
after 310 seconds when using only the GPS. However,
when using the GPS and INS measurements together,
the integer ambiguity was determined after only 12
seconds. Comparing Figs. 10 and 12, there was only a
small delay in obtaining convergence.

When the number of GPS satellite measurements
was reduced from seven to six, it took approximately
200 seconds longer for the GPS only case. This means
that the ambiguity resolution is very sensitive to the
number of visible satellites. However, when using the
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INS information as well as the GPS information, it
took only 4 seconds longer than using seven satellites
to obtain convergence, as seen by comparing Figs. 10
and 12. Therefore, the proposed algorithm obtains a
faster convergence and is less sensitive to the number
of observable satellites.

Finally, the number of visible satellites was reduced
from six to five. Fig. 13 shows the probabilities of the
hypotheses using only the GPS measurements. The
Wald test fails to find the true integer ambiguity: the
small number of GPS satellites makes this difficult.
However, Fig. 14 shows how the lack of sufficient
GPS satellites is overcome with the help of the INS
measurements. It took 15 seconds to obtain the true
integer ambiguity. The INS information for the
proposed algorithm helps obtain one true integer from
many candidates. This shows that the INS
measurements provide the high quality information
needed to accelerate the process of attributing a high
probability to the true candidate and low probabilities
to all others. Finally, this process results in a faster
convergence time in resolving the integer

0.9
(}.S;
2 01
‘g .
8 o6 . . .
> Fail to determine the true ambiguity
s 05
@
B
3 0.4;
S
> 03
0.2:
0.1
] £ RS e e T
0 50 250 360 350 400

Time(sec)

Fig. 13. Probability of the hypotheses using only five

GPS satellites.
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08
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Fig. 14. Probability of the hypotheses using only five
GPS satellites and INS.
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Fig. 15. Summary of the convergence times.

Furthermore, it works as one measurement and
eventually succeeds in obtaining the integers using
only five observable satellites, where the normal
algorithm fails to obtain them.

Fig. 15 summarizes the convergence time of the
experiment performed.

Summarizing the experimental results, it is clear
that the impact of the INS information on the Wald
test in resolving integer ambiguity is positive.
Furthermore, for smaller numbers of observable
satellites, the performance improvement in the
convergence time is very significant when the INS
information is used. In the case of five visible
satellites, the GPS-only ambiguity resolution failed,
but the integer ambiguity was resolved rapidly when
using the added INS measurements.

5. CONCLUSIONS

Real time applications of GPS carrier phase
measurements have been used for precise navigation
for more than a decade. The primary problem in using
carrier phase measurements as high accuracy range
measurements for real time navigation is resolving the
integer ambiguity in real time and in real situations.

In this paper, a reduction in the convergence time in
determining the integer ambiguity has been achieved
using the Wald test together with INS information.
Furthermore, this method enables the determination of
integers even when as few as five satellites are
observable.

To evaluate the proposed algorithm, an experiment
was conducted. One GPS antenna was installed on a
roof rack of a car and an INS was installed inside the
car which moved along a preplanned trajectory twice
with seven observable satellites. It was determined
that it took 88 seconds to obtain convergence on the
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integer ambiguity using the Wald test without the INS
information; however, it took only 8 seconds for the
proposed algorithm using the INS information. The
positive impact of the INS information on the
convergence time in the Wald test became greater
when the number of observable satellites was reduced.
For six observable GPS satellites, the integer
ambiguity was determined in 310 seconds for the
GPS-only case, whereas it took only 12 seconds when
using the GPS and INS information together. With a
fewer number of observable satellites, the ambiguity
resolution occurred faster using the proposed
algorithm with the INS information. Furthermore,
when the number of visual satellites was five, the
integer ambiguity could not be obtained; however,
when the INS measurements were used, the integer
ambiguity was successfully resolved within a
reasonable time.

The experimental results have shown that the
proposed Wald test algorithm used together with the
INS information gives a much less sensitive
convergence performance. Furthermore, the proposed
method works as an additional measurement and
eventually succeeds in obtaining integers with only
five observable satellites where the normal algorithms
fail to obtain them.
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