• Title/Summary/Keyword: global navigation satellite system

Search Result 533, Processing Time 0.026 seconds

GPS 위성 시계오차 특성의 장단기 분석

  • Son, Eun-Seong;Kim, Gyeong-Hui;Park, Gwan-Dong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • GNSS(Global Navigation Satellite System)의 하나인 GPS(Global Positioning System)를 이용한 정밀 측위에 있어서 위성의 시계오차는 측위 정확도에 매우 큰 영향을 미친다. GPS위성에는 세슘(Cs)과 루비듐(Rb)으로 이루어진 4개의 원자시계가 탑재되어있으며 현재 사용하고 있는 원자시계의 종류는 NANU(GPS Notice Advisory to Navster Users) 정보를 통해 알 수 있다. 이 연구에서는 IGS(International GNSS Service)에서 제공하는 sp3 파일과 clk 파일을 이용하여 위성시계 특성을 분석하였다. 2000년부터 2009년까지의 sp3 파일에서 각 PRN에 대한 위성시계오차 값을 추출하여 그래프로 분석하였다. 그 결과 대부분의 세슘시계는 직선형태, 루비듐시계는 곡선형태의 특성을 보였으나 일정한 경향은 나타나지 않음을 알 수 있었다. 또한 3주간의 clk 파일에서 위성시계오차 값을 추출하여 각 PRN별로 1차식과 2차식으로 접합(fitting)하고 그 결과를 비교하였다. 세슘시계의 위성시계오차 값의 경우 2차식보다 1차식이 추출 데이터와 일치함을 알 수 있었으며 세슘시계의 위성시계오차 값은 직선형태의 특성을 보이는 것을 확인 할 수 있었다. 그리고 Modified Allan Deviation(MADEV) 방법을 적용하여 분석한 결과 GPS 위성의 block 별로 서로 다른 특성이 보임을 확인할 수 있었다.

  • PDF

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Development and Performance Analysis of a New Navigation Algorithm by Combining Gravity Gradient and Terrain Data as well as EKF and Profile Matching

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.367-377
    • /
    • 2019
  • As an alternative navigation system for the non-GNSS (Global Navigation Satellite System) environment, a new type of DBRN (DataBase Referenced Navigation) which applies both gravity gradient and terrain, and combines filter-based algorithm with profile matching was suggested. To improve the stability of the performance compared to the previous study, both centralized and decentralized EKF (Extended Kalman Filter) were constructed based on gravity gradient and terrain data, and one of filters was selected in a timely manner. Then, the final position of a moving vehicle was determined by combining a position from the filter with the one from a profile matching. In the simulation test, it was found that the overall performance was improved to the 19.957m by combining centralized and decentralized EKF compared to the centralized EKF that of 20.779m. Especially, the divergence of centralized EKF in two trajectories located in the plain area disappeared. In addition, the average horizontal error decreased to the 16.704m by re-determining the final position using both filter-based and profile matching solutions. Of course, not all trajectories generated improved performance but there is not a large difference in terms of their horizontal errors. Among nine trajectories, eights show smaller than 20m and only one has 21.654m error. Thus, it would be concluded that the endemic problem of performance inconsistency in the single geophysical DB or algorithm-based DBRN was resolved because the combination of geophysical data and algorithms determined the position with a consistent level of error.

The First Measurement of Seasonal Trends in the Equatorial Ionospheric Anomaly Trough at the CHUK GNSS Site During the Solar Maximum in 2014

  • Chung, Jong-Kyun;Yoo, Sung-Moon;Lee, Wookyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • The equatorial region of the Earth's ionosphere exhibits large temporal variations in electron density that have significant implications on satellite signal transmissions. In this paper, the first observation results of the variations in the trough of the equatorial ionospheric anomaly at the permanent Global Navigation Satellite System (GNSS) site in Chuuk (Geographic: $7.5^{\circ}N$, $151.9^{\circ}E$; Geomagnetic: $0.4^{\circ}N$) are presented. It was found that the daytime Global Positioning System (GPS) total electron content (TEC) values vary according to the 27 day period of solar rotation, and that these trends show sharp contrast with those of summer. The amplitudes of the semi-annual anomaly were 12.4 TECU (33 %) on $19^{th}$ of March and 8.8 TECU (23 %) on $25^{th}$ of October respectively, with a yearly averaged value of 38.0 TECU. The equinoctial asymmetry at the March equinox was higher than that at the October equinox rather than the November equinox. Daily mean TEC values were higher in December than in June, which could be interpreted as annual or winter anomalies. The nighttime GPS TEC enhancements during 20:00-24:00 LT also exhibited the semi-annual variation. The pre-midnight TEC enhancement could be explained with the slow loss process of electron density that is largely produced during the daytime of equinox. However, the significant peaks around 22:00-23:00 LT at the spring equinox require other mechanisms other than the slow loss process of the electron density.

Comparative Analysis of Performance for DGPS and SBAS in Korea Region (국내 지역에서의 DGPS와 SBAS 성능 비교 분석)

  • Lim, Cheol-soon;Park, Byung-woon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • The international maritime organization(IMO) has defined performance requirements for future maritime navigation through IMO resolution A.915(22) in 2001. Many DGPS systems currently providing DGPS services do not meet the performance requirements specified in IMO resolution A.915(22). The use of SBAS is considered as one of the DGPS replacement and supplementary system for coping with the increase in demand performance and providing safe positioning service. In particular, since a large amount of budget is required to rearrange the existing DGPS reference stations, a method which transmits differential corrections generated by using SBAS message has been proposed. In this paper, we compare and analyze the performance of NDGPS which is operated by the National Maritime PNT Office of the ministry of oceans and fisheries(MOF) in Korea and MSAS in Japan. Also, we verify that SBAS, as alternative and complementary system, meets the performance requirement specified in IMO resolution A.915(22).

Network Configuration Study for Multi-Satellite Operations (다중위성운영을 위한 네트워크 구성 방안 연구)

  • Baek, Hyun Chul;Jang, In Sik;Lee, Sang Jeong;Kim, Byung Chul;Lee, Jae Yong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Integration of satellites with diverse missions, such as broadcast-communication, earth, meteorologicaland marine observations, and navigation, is vulnerable. The problems of the currently constructed ground station network were analyzed by constructing the test environment. Based on this, we designed a network that was capable of operating multiple satellites by one ground station. In addition, we proposed an interface and network configuration method with domestic and foreign ground stations. The network linking the domestic and foreign ground stations was composed of KREONET (Korea Research Environment Open Network) and GLORIAD (Global Ring Network for Advanced Application Development) of the KISTI(Korea Institute of Science and Technology Information). The internal network consists of VPN (Virtual Private Network), DMZ(De-Militarized Zone), and 1-way USB and so forth. By constructing the network by using the proposed method, harmful data, such as virus inflow and infection, can be blocked.

Wide Area Augmentation System Estimating C1P1 DCB (C1P1 DCB를 추정하는 광역보강항법 시스템)

  • Bu, Sung-Chun;So, Hyoung-Min;Kim, Kap-Jin;Lee, Chul-Soo;Kim, Do-Kyoung;Ko, Yo-Han
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.400-408
    • /
    • 2018
  • Wide area augmentation system is a system that generates and transmits correction and Integrity information for use in wide area. Typical system is SBAS. In the United States, it operates under the name WAAS, EGNOS in Europe, MSAS in Japan, SDCM in Russia, GAGAN in India. it is developing Korean SBAS which named KASS by 2022 in Korea. SBAS is a standard System that is operated as civil aviation service base and set as international standards by ICAO. So the correction data can only is used for civil SPS receiver. In this paper, we discuss C1P1 DCB estimation which need to use SPS correction service for PPS receiver. Then we analyze C1P1 DCB correction effect under standalone Satellite Navigation and method to use PPS receiver under SPS DGPS. Finally we organize wide area augmentation system for PPS receiver and analysis performance.

Development of Gravity Gradient Referenced Navigation and its Horizontal Accuracy Analysis (중력구배기반 항법 구현 및 수평위치 정확도 분석)

  • Lee, Jisun;Kwon, Jay Hyoun;Yu, Myeongjong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • Recently, researches on DBRN(DataBase Referenced Navigation) system are being carried out to replace GNSS(Global Navigation Satellite System), as weaknesses of GNSS were found that are caused by the intentional interference and the jamming of the satellite signal. This paper describes the gravity gradient modeling and the construction of EKF(Extended Kalman Filter) based GGRN(Gravity Gradient Referenced Navigation). To analyze the performance of GGRN, fourteen flight trajectories were made for simulations over whole South Korea. During the simulations, we considered the errors in both DB(DataBase) and sensor as well as the flight altitudes. Accurate performances were found, when errors in the DB and the sensor are small and they located at lower altitude. For comparative evaluation, the traditional TRN(Terrain Referenced Navigation) was also developed and performances were analyzed relative to those from the GGRN. In fact, most of GGRN performed better in low altitude, but both of precise gravity gradient DB and gradiometer were required to obtain similar level of precisions at the high altitude. In the future, additional tests and evaluations on the GGRN need to be performed to investigate on more factors such as DB resolution, flight speed, and the update rate.

Development of Linearly Interpolated PRC Regenerating Algorithm to Improve Navigation Solution using Multi-DGPS Reference Stations

  • Oh, Kyung-Ryoon;Kim, Jong-Chul;Nam, Gi-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1618-1622
    • /
    • 2004
  • In this paper, the linearly interpolated PRC(Pseudo Range Correction) regenerating algorithm was applied to improve the DGPS(Differential Global Positioning System) positioning accuracy at user's spot by using the various PRC information obtained from multi-DGPS reference stations. The PRC information of each GPS satellite is not varying rapidly; it is possible to assume that the variation of PRC information of each GPS satellite is linear. So the linearly interpolated PRC regenerating algorithm can be applied to improve the DGPS positioning accuracy at user's spot by using the various PRC information obtained from multi-DGPS reference stations. To test the performance of the linearly interpolated PRC regenerating algorithm, maritime DGPS reference stations' PRC data was used in RTCM format. 11 maritime DGPS reference stations are in service providing DGPS information to public since 1999. Two set of 3 DGPS reference stations are selected to compare the performance of the linearly interpolated PRC regenerating algorithm. The DGPS positioning accuracy was dramatically improved about 40%. Linearly interpolated PRC regenerating algorithm adopted multi-channel DGPS receiver will be developed in near future.

  • PDF