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Abstract

As an alternative navigation system for the non-GNSS (Global Navigation Satellite System) environment, 
a new type of DBRN (DataBase Referenced Navigation) which applies both gravity gradient and terrain, 
and combines filter-based algorithm with profile matching was suggested. To improve the stability of the 
performance compared to the previous study, both centralized and decentralized EKF (Extended Kalman Filter) 
were constructed based on gravity gradient and terrain data, and one of filters was selected in a timely manner. 
Then, the final position of a moving vehicle was determined by combining a position from the filter with the one 
from a profile matching. In the simulation test, it was found that the overall performance was improved to the 
19.957m by combining centralized and decentralized EKF compared to the centralized EKF that of 20.779m. 
Especially, the divergence of centralized EKF in two trajectories located in the plain area disappeared. In 
addition, the average horizontal error decreased to the 16.704m by re-determining the final position using both 
filter-based and profile matching solutions. Of course, not all trajectories generated improved performance but 
there is not a large difference in terms of their horizontal errors. Among nine trajectories, eights show smaller 
than 20m and only one has 21.654m error. Thus, it would be concluded that the endemic problem of performance 
inconsistency in the single geophysical DB or algorithm-based DBRN was resolved because the combination of 
geophysical data and algorithms determined the position with a consistent level of error. 

Keywords : �Gravity Gradient, Terrain, Centralized Extended Kalman Filter, Decentralized Extended Kalman 
Filter, Profile Matching, Combination of Database and Algorithm

367  

ISSN 1598-4850(Print)
ISSN 2288-260X(Online)
 Original article

1. Introduction

An alternative navigation system is becoming an issue 
for solving the accuracy degradation problem from signal 
blockages or solar storms in satellite-based navigation 
systems. A typical alternative navigation system combines an 
INS (Inertial Navigation System) with other external sensors. 
Because the INS error increases as time goes on, a combined 
navigation system compensates for the INS error and 
determines accurate positions of a vehicle over a long period 
of time. One such GNSS/INS (Global Navigation Satellite 

System / INS) has been studied since the middle of the 1950s 
(Cox, 1978; Nielson et al., 1986), but its positional accuracy 
decreases dramatically in non-GNSS environments. Thus, 
another type of alternative system, called DBRN (DataBase 
Referenced Navigation), combines an INS with geophysical 
sensors and a DB and is being studied due to development 
of sensors with high precision and resolution. A submarine 
cannot receive a GNSS signal when it operates underwater, 
so the necessity for DBRN is especially emphasized (Stutters 
et al., 2008; Leonard and Bahr, 2019). 

The early stage of research on DBRN generally applied 
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single geophysical data (e.g. terrain, gravity) or a navigation 
algorithm (e.g. a filter, or profile matching) (Hollowell, 1990; 
Laur and Llanso, 1995; Zhang et al., 2004; Cowie et al., 2008; 
Richeson, 2008; Wang and Bian, 2008; Rogers, 2009; Liu et 
al., 2010; DeGregoria, 2010). However, positional accuracy 
was not at a satisfactory level, because the INS error was 
not properly compensated for when a vehicle moved over a 
plain. In addition, both the divergence problem of a filter-
based algorithm and the relatively lower positional accuracy 
in the profile-matching algorithm were pointed out (Perea et 
al., 2007; Groves, 2013; Lee et al., 2014). Thus, recent studies 
have focused on the combination of various geophysical 
sensors/DBs and navigation algorithms to complement the 
weakness and improve accuracy (Robins, 1998; Liu et al., 
2009; Xiong et al., 2013; Wang et al., 2016; Yurong et al., 
2016; Dai et al., 2019). The studies on DBRN started in the 
middle of the 2000s in Korea (Lee and Kwon, 2010; Mok et 
al., 2012; Lee et al., 2013; Yu et al., 2013; Lee et al., 2015). 
Those studies also faced similar problems, and accuracy 
remained at about the 30–50m level. Thus, a combination 
of geophysical sensors/DBs or navigation algorithms was 
suggested in mid-2010 as a  way to improve accuracy. Lee 
and Kwon (2016) combined the terrain and gravity gradient 
data in a centralized EKF (Extended Kalman Filter), and the 
final position was re-determined by combining the filter and 
profile matching every 10 seconds. However, some tested 
trajectories show better positional accuracy when single 
geophysical data and a navigation algorithm was applied, 
so the development of a decentralized EKF or switching of 
the navigation algorithm were suggested for an improvement 
plan. 

As a follow-up study by  Lee and Kwon (2016), a 
new navigation algorithm that combines heterogeneous 
geophysical data and sensors was proposed, and its positional 
accuracy was evaluated based on simulation. In detail, a 
decentralized EKF was developed, and switching between a 
centralized EKF and a decentralized EKF was tested. Also, 
final positions were determined by combining or switching 
the EKF solution with profile matching.

2. Methodologies

The reason to combine heterogeneous geophysical DBs 
and algorithms is to complement the weakness in the use 
of a single DB or algorithm, and to improve accuracy and 
stability. For example, terrain data show higher accuracy 
and resolution compared to the gravity gradient data in the 
same target area. Only terrain height is extracted from the 
terrain DB, but six components are available from gravity 
gradient DBs. It means that GGRN (Gravity Gradient 
Referenced Navigation) can be more stable than TRN 
(Terrain Referenced Navigation) when a vehicle moves over 
a low variation area. In addition, the filter-based navigation 
algorithm that compensates for the INS error every epoch 
sometimes diverges when the local variation in geophysical 
data is irregular. In this situation, the profile-matching 
algorithm that stacks geophysical information for a while 
and compares it to find the optimal position could determine 
the position with high accuracy. Thus, a combination of 
geophysical data and algorithms is necessary to guarantee 
stability anywhere the vehicle moves. 

In this study, both the terrain and gravity gradient data 
were combined with a filter-based algorithm, and the final 
position was determined by a solution from the filter with 
profile matching. In a previous study, the terrain and gravity 
gradient were included as measurements in the centralized 
EKF. However, independent GGRN and TRN were operated 
and combined as a type of decentralized EKF for this study, 
and switching between a centralized EKF and a decentralized 
EKF was considered. Also, a profile matching algorithm was 
applied to check the reliability of the EKF solution, and the 
final position was determined by combining or switching 
two solutions from the EKF and profile matching. When 
updating the position, the P matrix of the EKF was updated 
by multiplying a constant, considering the method of final 
position determination. Figure 1 illustrates the concept of 
the new navigation algorithm that combines heterogeneous 
geophysical data and algorithms. In the figure, the explanation 
in red is the part improved, compared to the previous study. 
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Fig. 1. Principles for combining a heterogeneous 
geophysical DB and algorithms

2.1 �Combination of terrain and gravity gradient 

using an EKF 

The filter-based algorithm compensates for the INS 
error by applying the difference between the information 
obtained by sensors and that extracted from the DB as a filter 
measurement. Among the various filters, e.g. EKF, UKK 
(Unscented Kalman Filter), BKF (Bank of Kalman Filter), 
the PMF (Point Mass Filter), etc., the EKF is broadly applied 
due to its fast processing time. However, an EKF assumes 
that the relationship between measurement and states (INS 
error) is linear, so it sometimes diverges when the linearity 
is not guaranteed on a plain or irregular-variation area. 
Geophysical data do not generally change to the specific 
positional direction, and thus, over-correction or a wrong 
correction can frequently occur in the EKF. Although sensors 
and DBs with higher accuracy and resolution are available 
in TRN, stability dramatically decreases in some test areas, 
compared to GGRN. That is because TRN applies only 
one height difference for the EKF measurement, whereas 
GGRN applies six components. Thus, a combination of 
terrain and gravity gradients is required to improve the 
stability of the EKF. There are two ways to combine them: 
the centralized type and the decentralized. The centralized 
EKF stacks all available geophysical information differences 
in a measurement vector and estimates the INS error. On the 
other hand, the decentralized EKF constructs an independent 
local filter based on single geophysical data, and combines 
the solution in a master filter. In general, a centralized filter 
has the benefit of minimal information loss (Skog, 2009), so 
the centralized type was selected in the previous study (Lee 

and Kwon (2016)). In a simulation test, improved positional 
accuracy was achieved by combining terrain and gravity gra-
dient data, but the divergence problem was not figured out in 
two tested trajectories. 

Thus, the centralized EKF and decentralized EKF were 
constructed at the same time, and the final solution from 
the filter-based algorithm was determined by averaging or 
switching, considering the difference in estimated position 
and the local characteristics of the geophysical data. The 
strategy to combine centralized and decentralized EKFs 
is summarized in Table 1. When the positional difference 
between the estimated position from the EKFs is smaller 
than half of the positional precision extracted from the P 
matrix, selection of a solution from the filter does not have 
a huge effect on the navigation result. Thus, the average of 
centralized and decentralized EKFs was applied; but the 
local roughness of geophysical data was additionally checked 
to improve the stability. The limit to check local roughness 
for the terrain is 20m of standard deviation, while 1Eo and 
6Eo were applied for the average and standard deviation in 
the gravity gradient. On the other hand, the centralized EKF 
generates relatively stable results, especially with a large 
positional difference or lower variations in the geophysical 
data. Thus, the INS error was compensated for by applying 
the estimate from the centralized EKF, and the P matrix 
was adjusted. If GGRN and TRN have a small positional 
difference, but their local characteristics are large enough, 
the position from the centralized filter could have a bias. 
In that case, the estimates from the centralized EKF were 
applied, but the position part of the P matrix was degraded 
by multiplying the original P matrix by 1.1 to reflect the 
ambiguity of the EKF solution.

2.2 Profile matching algorithm

The reason to combine profile matching with EKF is to 
complement the over-correction or wrong correction problem 
when the linearity between measurements and states is not 
guaranteed in the EKF. In general, the success rate and the 
stability of profile matching are high when a vehicle moves 
in a region where the geophysical data vary a lot. Therefore, 
profile matching would be applied to check the reliability of 
the estimates from the EKF as well as to bind the position 
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error. For this reason, profile matching was constructed 
and applied in this study. Among the various geophysical 
data, terrain data were selected because the resolution and 
accuracy of sensors and DBs are higher than gravity gradient. 

In the profile matching, a number of candidate profiles 
were generated in the test area, and the final INS position 
was selected when the difference between stacked terrain 
information (the height of a vehicle profile) and extracted in-
formation from the DB (the height from a candidate profile) 
is small. To remove the effect of the sign in the difference 
computation, the differences were changed to absolute val-
ues, called the MAD (Mean Absolute Difference). Since the 
performance of profile matching is better when the terrain 
varies a lot, two indicators called  and  were consid-
ered. For reference,  is the standard deviation of the height 

difference between the vehicle and the candidate profile;  is 
the standard deviation of the height difference when the height 
difference was already calculated in each profile. In addition, 
selection of a candidate profile showing the minimum MAD is 
quite risky due to errors in DBs and sensors. Therefore, three 
top-ranked candidate profiles were extracted, and the MAD 
ratio was checked to improve stability. Finally, the INS posi-
tion was determined by averaging two candidates or select-
ing one from the profile matching, and a flag was allocated 
to show the reliability of the selection. Among four types of 
flag, flags 10 and 11 do not have sufficient reliability to update 
the INS position, but the selection could be used to compare 
with a solution from the EKF, so they were referenced in the 
combination of EKF and profile matching. Please see detailed 
strategies for profile matching in Lee and Kwon (2016).

Condition 1 Condition 2/3 Combination P matrix

Both ② and ③
< Ppos_cent/2

Both gravity gradient and terrain change sufficiently 1:1 (average) Pgg

Either gravity gradient or terrain shows low variation Centralized Pcent

② or ③ > Ppos_cent/2
① < Ppos_cent/2

Both gravity gradient and terrain change 
sufficiently Centralized Pcent x 1.1

Either gravity gradient or terrain shows 
low variation Centralized Pcent

① > Ppos_cent/2 Centralized Pcent

Position difference
① Estimated position difference between GGRN and TRN (decentralized filter)
② Estimated position difference between centralized EKF and GGRN
③ Estimated position difference between centralized EKF and TRN 

Table 1. The standard to combine a centralized EKF and a decentralized EKF 

Table 2. The standard to determine the position and flag in the profile matching algorithm

flag Condition Final position

1 MAD of the top-priority candidate profile is small (the MAD ratio is smaller than 80%) Top-priority candidate 
profile

2 MAD of the top two candidate profiles are similar (the ratio between two MADs is 
over 80%), but the position difference is less than 135m

Average of two top 
candidate profiles 

11 MAD of the top two candidate profiles are similar (the ratio between two MADs is 
over 80%), but the position difference is greater than 135m Top-priority candidate 

profile (low reliability)
10 MAD of the top three candidate profiles are similar
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2.3 �Combination of navigation algorithms (EKF 

and profile matching)

EKF estimates the INS position every second, whereas 
profile matching determines the position every 10 seconds. 
Thus, the determination of the final position by combining 
two navigation algorithms was performed every 10 seconds. 
It means that the INS errors are compensated for every 
second, and a new position is determined by combining 
or switching EKF and profile matching solutions every 10 
seconds.

In the previous study, two candidates (one from the 
centralized EKF and the other from profile matching) were 
combined by applying a weight, and the P matrix of the 
filter was updated by allocating a specific value (e.g. 45m, 
90m, etc.) to the profile matching. In that case, a relatively 
large error could be allocated, although the profile matching 
generates reliable position information. Because the newly 
proposed filter-based algorithm combines centralized and 
decentralized EKFs to improve stability, the estimated P 
matrix in the filter was assumed to be trustworthy. Instead, 
the position part of the P matrix was slightly adjusted by 
multiplying a constant (e.g. 1.1, 1.2) to reflect the ambiguity 
in case the profile matching solution is applied to determine 
a new solution. In addition, the previous study set up detailed 
conditions in the combination of the navigation algorithms, 
considering the flag of the profile matching as one of the main 
factors. However, the new combination algorithm checks 

whether the flag is 1 or 2, and the terrain roughness indicators 
are handled meaningfully.

The conditions to combine navigation algorithms are 
summarized in Table 3, and the final position is determined 
considering weight. In general, the EKF-based solution 
has higher accuracy, so the weight of the EKF is relative-
ly larger than the weight of profile matching. However, the 
weight of the EKF was adjusted to be similar to the weight 
of profile matching when the position from profile matching 
is trusted, in order to make the relatively large effect of the 
profile matching on the final solution. When  is 1 
and  means the position from the EKF was totally 
applied. In the case of the P matrix, the original P matrix es-
timated from the EKF was applied for cases that do not have 
any comments. For reference, the standard to check the posi-
tional difference between navigation algorithms (e.g. 100m, 
120m, 180m) were calculated by multiplying a constant with 
the 20m estimated position error of the combined EKFs. Be-
cause of inconsistency in geophysical data and algorithms, 
the multiplier was determined empirically based on numer-
ous simulation tests to determine the value that fits generally. 
Again, those values were determined in order to find the most 
suitable value. Eq. (1) shows the combination strategy for the 
EKF and profile matching.

                                                                                            
(1)

 

Condition New Position and P matrix
profile flag = 1 or 2

else

 or  

else

or
profile flag = 1 or 2

else

else
else

Table 4. The standard to combine filter-based algorithms and the profile matching algorithm



Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 37, No. 5, 367-377, 2019

372  

3. Performance Analysis of Combining 

Geophysical DBs and Algorithms

3.1 Simulation Environments

The performance of the newly proposed combination 
algorithm was evaluated based on simulation tests. In the 
simulation, the vehicle flies loaded with a navigation-grade 
IMU (Inertial Measurement Unit), a FTG (Full Tensor 
Gradiometer) with a 3Eo level of precision, and a radar 
altimeter with 5m precision. Also, two complementary 
sensors, a barometer, and a compass were added to 
compensate for the altitude and yaw error of the IMU. In 
terms of a geophysical DB, one terrain DB and six gravity 
gradient DBs were loaded, and their resolution and precision 
were assumed as listed in Table 5, considering the currently 
available sensors and DBs. In practical terms, both the radar 
altimeter and the barometer are necessary to determine the 
terrain height, such that the measurement error of the sensor 
in TRN was assumed to be 10m. 

 The performance was checked in a total of nine trajectories 
that were generated from south to north with a 0.25° interval 
from longitude 127° to 129°. The starting position of each 
trajectory was 35°, and the left seven trajectories finished 
the flight at 38°, but the right two trajectories ended at 37.5° 
because the ocean is located in the northeast part of Korea. 
The flight altitude was assumed to be 3000m, and the vehicle 
speed was 350km/h.

 
3.2 Performance Analysis

The performance of the new navigation algorithm has been 
evaluated in two parts. The update effect from the centralized 
EKF to the decentralized EKF was verified in the first test, 
and the combining of decentralized EKF with the profile 
matching was followed. In the performance analysis, the 
horizontal position accuracy means the standard deviation of 

nal Of Mem

Table 5. Specifications of the DB and sensors for GGRN and TRN

GGRN TRN

DB resolution
(arcsec)

DB precision
(Eo)

Sensor precision 
(Eo)

DB resolution
(arcsec)

DB precision
(m)

Sensor precision 
(m)

30 3 3 3 16 10

horizontal position error with respect to the true trajectory, 
as shown in Eq. (2). 

                                                                                            (2)

where,  is the horizontal position error which is 
calculated by the sum of differences between positions 
estimated from the combination algorithm and true 
trajectory, and  is mean of the horizontal position error, 
respectively, and n is the total number of epochs. 

3.2.1 �Combination of centralized and 

decentralized EKFs 

The horizontal position accuracy of the newly developed 
combined EKF is summarized in Table 6. To compare the 
effect of the new algorithm, the single geophysical referenced 
navigation (GGRN, TRN), and centralized filter accuracy, 
which were published in Lee and Kwon (2016), are included. 
Because currently available sensors and DBs were assumed 
in the simulation, the average horizontal accuracy of GGRN 
and TRN remained about 115m and 54m, respectively. It should 
be mentioned that two diverged trajectories were excluded 
when calculating the average from TRN. The reason for the 
divergence was found to be the vehicle starting the flight in a 
quite smooth region. To figure out the divergence problem, Lee 
and Kwon (2016) developed GGTRN (Gravity Gradient and 
Terrain Referenced Navigation) through a centralized EKF. 
The average decreased to the 21m level, but the divergence 
problem was not solved. However, it was found that horizontal 
error in trajectories 8 and 9 decreased to less than 50m with the 
newly proposed algorithm (centralized + decentralized EKF). 
Also, the average horizontal error decreased to 19.957m. 
Again, it should be emphasized that 19.957m is the average that 
was calculated based on all the trajectories. 
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Of course, not all trajectories showed improvement from 
the combination of centralized and decentralized EKFs. For 
example, trajectories 3 and 4 had the smallest horizontal 
error in TRN, and trajectory 7 showed the minimum error in 
GGTRN (centralized). However, TRN did not have consistent 
results, because the range was from 7.2m to divergence. Also, 
the centralized filter was not the optimal solution to solve the 
divergence problem. On the other hand, the newly proposed 
algorithm shows a uniform distribution, and maximum 
error was bound smaller than 50m, so the new algorithm is 
meaningful in terms of stability. 

3.2.2 �Combination of GGTRN(centralized+d

ecentralized) and profile matching

Before showing the performance from the combination 
of navigation algorithms, the horizontal position error is 
summarized in Table 7. The average horizontal error for all 
trajectories was calculated at about 67m, and no divergence 
occurred, so horizontal error does not exceed 100m in 

Traj. no. GGRN
(m)

TRN
(m)

GGTRN
(centralized) (m)

GGTRN
(centralized + decentralized) (m)

1 192.337 22.821 63.714 18.247 
2 192.678 294.579 22.630 15.094 
3 52.727 11.092 10.985 12.104 
4 41.972 9.577 9.847 13.577 
5 187.572 7.199 8.644 16.007 
6 71.020 15.058 16.310 14.967 
7 87.817 16.227 13.321 15.929 
8 141.560 36976.350 4472.651 46.130 
9 64.557 8272.175 1004.115 27.560 

Average 114.693 53.793* 20.779* 19.957 

Table 6. Horizontal errors of the filter-based algorithms 
(GGRN, TRN, GGTRN(centralized), GGTRN(centralized+decentralized))

Table 7. Horizontal errors of the profile matching algorithm (Lee and Kwon (2016))

* the average horizontal error when the trajectory showing divergence is excluded

trajectories 8 and 9. Overall performance was better in the 
EKF, but profile matching is sufficient to check the reliability 
of the EKF and to determine new update conditions, because 
it generates consistent results. The profile matching algorithm 
was developed in Lee and Kwon (2016); thus, please refer 
to their initial results and their analysis of the combination 
possibility between heterogeneous algorithms.

Table 8 shows the navigation performance when 
the EKFs (centralized + decentralized) and profile 
matching were combined. Among the nine trajectories, 
horizontal error decreased in trajectories 1, 5, 6, 8, and 
9. The largest improvement (about 318%) was found in 
trajectory 8; the 46.130m position error from the EKF 
(centralized+decentralized) was bound to 14.505m when 
the profile matching was combined. On the other hand, 
trajectories 2, 3, 4, and 7 showed poorer navigation results 
than EKF alone, and the maximum degradation was about 
4.8m. The horizontal error in trajectory 3 increased from 
12.104m to 16.872m. However, the average for all the 

Traj. no. 1 2 3 4 5
Horizontal error (m) 66.438 90.555 65.529 49.100 40.391

Traj. no. 6 7 8 9 average
Horizontal error (m) 47.718 50.077 106.079 89.316 67.245
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trajectories improved from 19.957m to 16.704m, and the 
ratio is about 120%, so that the effect of combining EKF 
with profile matching is meaningful. In particular, eight 
trajectories (except for trajectory 9) have a horizontal error 
smaller than 20m, and those are consistent. Thus, it could 
be said that stability without regional performance ups and 
downs, which is pursued in this study, was met. 

For reference, the average horizontal error in the 
combination of GGTRN (centralized) and profile matching 
was about 17.885m. It is not a significant improvement 
numerically, but the average of 1.2m was updated in this 
study. Thus, it could be judged that an update of the filter-
based algorithm and the combination strategy had a positive 
effect.

To check the effect of the new combination method in 
detail, the horizontal error in trajectory 8, which showed 
the largest improvement, was plotted. In Fig. 2(a), the height 
of the terrain was lower than 100m for about 100 seconds 
when the flight had just started, and the flight moved over a 
plain again after 300 seconds. Because of those significant 
low variations, the horizontal error increased in TRN. From 
100 seconds to 300 seconds, the horizontal error decreased 
for a while due to variation in the terrain, but it dramatically 
increased again after 300 seconds. This means that INS errors 
were not properly compensated for over the plain. On the 
other hand, the gravity gradient (N-E component) changed 
similar to a sine curve. Although the range of variations was 

Table 8. Horizontal errors of the GGTRN and combination of GGTRN with profile matching

Traj. no.
GGTRN

(centralized + decentralized)
(m)

GGTRN (centralized + 
decentralized) + profile matching 

(m)
Positional 

difference (m)
Performance 

Ratio (%)

1 18.247 16.521 -1.726 110.446 
2 15.094 19.481 3.770 77.483 
3 12.104 16.872 4.768 71.742 
4 13.577 16.081 1.862 84.431 
5 16.007 12.588 -2.536 127.158 
6 14.967 14.034 -0.933 106.648 
7 15.929 18.605 2.833 85.618 
8 46.130 14.505 -30.437 318.034 
9 27.560 21.654 -5.453 127.278 

Average 19.957 16.704 -3.095 119.473 

not that large, it was found that gravity gradient continuously 
changed as time went on. That is why the horizontal error in 
GGRN did not increase a lot at the beginning, and the INS 
error was bound to smaller than a few hundred meters when 
gravity gradient varied a lot (after 700 seconds). Thus, the 
overall performance, which was calculated as the standard 
deviation of the position difference compared to the true 
trajectory was calculated to be at the 100m level. In this 
study, GGTRN was modified to combine GGRN and TRN by 
average, or to apply a centralized solution with an adjusted P 
matrix. If all geophysical information is combined in a filter, 
the effect of the gravity gradient could be reduced, because 
the errors from DBs and sensors are relatively high in GGRN. 
However, intrinsic characteristics could be reserved when 
GGRN and TRN are separately developed and combined. 
Also, the degradation of the P matrix prohibits divergence 
by increasing the ambiguity in the determined position. As 
a result, gravity gradient had a positive effect on binding the 
TRN error, and the horizontal position error did not exceed 
250m over the whole flight. 

In these efforts, the average horizontal error in trajectory 
8 was still 46m. However, the horizontal error decreased by 
combining the profile matching, and the maximum error was 
not over 100m. That is because a new position with a 50m 
level of accuracy was suggested through profile matching, 
and it was sufficient to check the reliability of GGRN and to 
combine the algorithms. In particular, the terrain variation 
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was quite small when flight time reached 900 seconds, so 
that the error of the selected position from profile matching 
increased. In that situation, a higher weight was allocated to 
GGTRN, and it prohibits the position from being hauled away 
after profile matching, so that horizontal error was consistent 
over the whole trajectory. Also, the effect of combination 
could be found in Fig. 2 which shows the flight trajectories of 
centralized GGTRN, decentralized GGTRN, decentralized 
GGTRN with profile matching.

Fig. 2. Variation of Geophysical Data and Horizontal 
Position Errors of Navigation Algorithms in Trajectory 
8: (a) Variation of geophysical data (terrain and gravity 

gradient), (b) horizontal position errors in GGRN, TRN, 
and GGTRN, and (c) horizontal position error in GGTRN, 

profile matching, and the combination of GGTRN and 
profile matching

With trajectory 3, a significant improvement from the 
combination of geophysical DBs and algorithms was not 
found (Fig. 3). Unlike trajectory 8, the terrain changed 
over the entire trajectory so that the horizontal error was 
bound to the 11m level in TRN. On the other hand, gravity 
gradient did not vary a lot. In this situation, over-correction 
or wrongly calculated correction values from GGRN could 
have a negative effect on the performance. Also, the 50m 
level from profile matching performance is not sufficient to 
complement TRN, which already has about a 10m level of 
error. However, the horizontal error was calculated to be 17m 
in the combination algorithm (GGTRN + profile matching), 
and it is not as big, compared to others. The reason to combine 
geophysical DBs and the algorithms is to find generalized 
conditions to guarantee stable performance without regional 
influence. Thus, it should be emphasized that the updated 

combination algorithm is meaningful, because all tested 
trajectories showed consistent navigation results.

Fig. 3. Variation of Geophysical Data and Horizontal 
Position Errors of Navigation Algorithms in Trajectory 
3: (a) Variation of geophysical data (terrain and gravity 

gradient), (b) horizontal position errors in GGRN, TRN, 
and GGTRN, and (c) horizontal position error in GGTRN, 

profile matching, and the combination of GGTRN and 
profile matching

4. Conclusions

In this study, a new navigation algorithm was suggested to 
complement the weakness of geophysical DBs and navigation 
algorithms and to obtain stable navigation performance. 
Because geophysical DBs change irregularly, and there is no 
clear standard to evaluate the reliability of a solution from 
a navigation algorithm, the new algorithm was developed 
focusing on finding generalized standards for any test areas. 
For this reason, GGTRN, which was developed as a type of 
centralized filter by  Lee and Kwon (2016), was modified 
to switch between a centralized EKF and a decentralized 
EKF. Also, the final position was determined by combining 
or switching profile matching with the modified EKF, and 
the adjusting method for the P matrix was changed from 
applying a specific value to multiplying a constant to preserve 
the stability of the P matrix estimated in the filter.

As a result of simulation tests, the average horizontal 
error from a total of nine trajectories decreased to 19.957m. 
Considering the 115m and 54m error under GGRN and TRN, 
it can be concluded that the combination of geophysical 
DBs and switching the type of filters had a positive effect 
in terms of stability. In particular, two trajectories where the 
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vehicle started the flight in a low-variation region diverged 
under TRN as well as the centralized type of GGTRN, but 
the horizontal errors of both trajectories were bound to 46m 
and 27m, respectively. 

The final position was determined by combining or 
switching the modified GGTRN with profile matching. 
Then, the average horizontal position error over all 
trajectories decreased to 16.7m, which was about a 3m 
improvement, compared to the modified GGTRN as applied. 
Not all trajectories showed improvement compared to the 
sole geophysical DB solution, to the centralized GGTRN, 
or to the modified GGTRN, but eight trajectories had a 
horizontal error smaller than 20m. Although trajectory 
9 had a 21.6m error, it is notable because the value is not 
a big difference, compared to the other trajectories. The 
effect of the combination filter-based algorithm with profile 
matching was maximized over a plain. In trajectory 9, TRN 
and centralized GGTRN diverged, and modified GGTRN 
showed a horizontal error of about 46m, but the performance 
improved to 14.50m from the combination of GGTRN and 
profile matching. Of course, the newly proposed algorithm 
is not optimal, because some trajectories showed better 
performance under TRN when the terrain changed a lot over 
the test area. However, the degradation in the performance 
was not that big, and the combination algorithm showed a 
horizontal error smaller than 20m. Thus, it could be concluded 
that the research objective of deriving a generalized standard 
was sufficiently achieved because all trajectories generated 
consistent navigation performance.
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