• Title/Summary/Keyword: global motion

Search Result 498, Processing Time 0.021 seconds

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Fuzzy Footstep Planning for Humanoid Robots Using Locomotion Primitives (보행 프리미티브 기반 휴머노이드 로봇의 퍼지 보행 계획)

  • Kim, Yong-Tae;Noh, Su-Hee;Han, Nam-I
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.7-10
    • /
    • 2007
  • This paper presents a fuzzy footstep planner for humanoid robots in complex environments. First, we define locomotion primitives for humanoid robots. A global planner finds a global path from a navigation map that is generated based on a combination of 2.5 dimensional maps of the 3D workspace. A local planner searches for an optimal sequence of locomotion primitives along the global path by using fuzzy footstep planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

  • PDF

Global Stage of Reproducibility Experiment for Single Point Diamond Turning (초정밀 선삭가공을 위한 글로벌스테이지의 재현성 실험)

  • Park, Dae-Kwang;Kwak, Nam-Su;Kwon, Dae-Ju;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.982-988
    • /
    • 2013
  • With conventional positioning apparatus, it is very difficult to simultaneously achieve the desired driving range and precision at the sub-micrometer level. Generally, lead screw and friction drive, etc., have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

Digital DC power supply for light accelerator

  • Kim, Yoon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1000-1003
    • /
    • 2014
  • There are 70 vertical and 70 horizontal correctors for Pohang Light Source. Until mid of 2000, power supplies for these correctors were based on 1990's technology, so the global orbit feedback system was not possible with poor 12 bit resolution. A new task force team was assembled to develop new power supplies with BESSY type DAC cards. After the project, two vertical correctors in each lattice were connected with new power supplies, and the global orbit feedback was available within the accuracy of 5 microns. However, this replacement was not enough to satisfy the beam stability requirement of 2 microns for PLS. We have launched another power supply design based on all digital technology. This attempt was completed within a year, and 80 units were assembled in house. Currently, the global orbit feedback system is running successfully with new digital power supplies and the compensation of chamber motion due to the thermal load by using digital displacement transducers attached on each BPMs.

An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV (PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구)

  • 김성균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.

Introduction to the Validation Module Design for CMDPS Baseline Products

  • Kim, Shin-Young;Chung, Chu-Yong;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.146-148
    • /
    • 2007
  • CMDPS (COMS Meteorological Data Processing System) is the operational meteorological products extraction system for data observed from COMS (Communication, Ocean and Meteorological Satellite) meteorological imager. CMDPS baseline products consist of 16 parameters including cloud information, water vapor products, surface information, environmental products and atmospheric motion vector. Additionally, CMDPS includes the function of calibration monitoring, and validation mechanism of the baseline products. The main objective of CMDPS validation module development is near-real time monitoring for the accuracy and reliability of the whole CMDPS products. Also, its long time validation statistics are used for upgrade of CMDPS such as algorithm parameter tuning and retrieval algorithm modification. This paper introduces the preliminary design on CMDPS validation module.

  • PDF

Local and Global Isotropy Analysis of Caster Wheeled Omnidirectional Mobile Robot

  • Kim Sung-bok;Moon Byoung-kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • The omnidirectional mobility of a mobile robot may lose significance in motion control, unless the isotropy characteristics of the mechanism is maintained well. This paper investigates the local and global isotropy of an omnidirectional mobile robot with three caster wheels. All possible actuations with different number and combination of rotating and steering joints are considered. First, the kinematic model based on velocity decomposition and the algebraic conditions for the local isotropy are obtained. Second, the geometric conditions for the local isotropy are derived and all isotropic configurations are fully identified. Third, the global isotropy index is examined to determine the optimal parameters in terms of actuation set, characteristic length, and steering link length.

  • PDF

Estimation of Ice Load on Bow of a Icebreaking Research Vessel (쇄빙 과학조사선 선수부에 작용하는 빙하중 추정)

  • Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.509-516
    • /
    • 2007
  • Ice load acting on a icebreaking research vessel is estimated. Existing measured ice loads are used to get the global load and the local load. The global load is for analyzing the bending behavior of the vessel during ice breaking operation mode and the local load for estimating the bow structural behavior. In the paper, the global load is predicted using the data from analysis of ship motion during ice breaking. And the local load is predicted using the data from strain gage attached to bow frames.

Interaction art using Video Synthesis Technology

  • Kim, Sung-Soo;Eom, Hyun-Young;Lim, Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Media art, which is a combination of media technology and art, is making a lot of progress in combination with AI, IoT and VR. This paper aims to meet people's needs by creating a video that simulates the dance moves of an object that users admire by using media art that features interactive interactions between users and works. The project proposed a universal image synthesis system that minimizes equipment constraints by utilizing a deep running-based Skeleton estimation system and one of the deep-running neural network structures, rather than a Kinect-based Skeleton image. The results of the experiment showed that the images implemented through the deep learning system were successful in generating the same results as the user did when they actually danced through inference and synthesis of motion that they did not actually behave.

Development of a High-Performance Vehicle Imaging Information System for an Efficient Vehicle Imaging Stabilization (효율적인 차량 영상 안정화를 위한 고성능 차량 영상 정보 시스템 개발)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.78-86
    • /
    • 2013
  • In this paper, we propose design of a high-performance vehicle imaging information system for an efficient vehicle imaging stabilization. The proposed system was designed the algorithm by divided as motion estimation and motion compensation. The motion estimation were configured as local motion vector estimation and irregular local motion vector detection, global motion vector estimation. The motion compensation was corrected for the four directions for compensate to the shake of vehicle video image using estimate GMV. The designed algorithm were designed the motion compensation technology chip by applied to IP for vehicle imaging stabilization. In this paper, the experimental results of the proposed vehicle imaging information system were proved to the effectiveness by compared with other methods, because imaging stabilization of moving vehicle was not used of memory by processing real-time. Also, it could be obtained to reduction effect of calculation time by arithmetic operation through to block matching.