• Title/Summary/Keyword: glass wool

Search Result 122, Processing Time 0.022 seconds

Experimental Research Application to each Types of Insulation Materials in Rural Houses (농촌주택의 단열 재료별 현장 적용을 위한 실험 연구)

  • Kwon, Soon-Chan;Kim, Eun-Ja
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.57-65
    • /
    • 2017
  • Life quality in farming areas is declining these days on account of decrease in population with the outflow of young generations, advent of aging society, and also lack of social and physical infrastructure. To reverse this, the central and local governments have been devising policies in many ways; however, the vulnerable class in farming area suffering from financial difficulty is not supported with that properly. The results of applying insulation materials applicable to rural houses, EPS, e-board, and glass wool, actually to rural houses are summed as follows. EPS is the most inexpensive among the three installations in terms of material cost and expenses. The indoor and outdoor temperature difference increased from $0.9^{\circ}C$ to $2.5^{\circ}C$, and the temperature change reduced as $0.04^{\circ}C$. With e-board, the indoor and outdoor temperature difference increased from $3.3^{\circ}C$ to $7.5^{\circ}C$; however, the temperature change increased as $0.09^{\circ}C$. Unlike the other two methods, glass wool requires the additional installation of wooden frames. The material cost is highest, and the indoor and outdoor temperature difference increased from $1.1^{\circ}C$ to $8.0^{\circ}C$, and the temperature change reduced as $0.01^{\circ}C$. According to the results of measuring temperature, glass wool's temperature difference is measured to be the highest, but temperature change is found to be the most effective in EPS. Among the three insulation methods, EPS is the most economically advantageous as the material supply is easy and the cost is low. The material is easily processible, so ordinary town residents can install it easily, and it is effective at improving insulation performance, too. But this method cannot be applied when the house has walls that are not even. Also, as the insulator is thick, after the installation, the living space may be narrower as a result.

Effects of sound absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound (흡음 석고보드 천장재에 의한 저주파 중량 바닥충격음의 저감 효과)

  • Song, Han-Sol;Ryu, Jong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • This study investigated effects of absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound through sound absorption coefficient and floor impact sound measurement. The sound absorption coefficients were measured with sound absorbent gypsum board, glass wool on gypsum board, and a double panel absorbent gypsum board (absorbent gypsum board + glass wool + absorbent gypsum board). Result showed that the absorbent gypsum board had sound absorption coefficient of 0.1 ~ 0.7 from 200 and 630 Hz octave band. The sound absorption coefficient was increased in all frequency range by adding glass wool. Additional absorbent gypsum board increased sound absorption coefficient up to 250 Hz octave band, but decreased over 250 Hz. Heavyweight floor impact sounds were measured in test building for three materials above, gypsum board, and bare slab. Result showed that glass wool on gypsum board and a double panel absorbent gypsum board reduced by 3 dB ~ 4 dB (single number quantity) heavyweight floor impact sound. Comparing with bare slab condition, floor impact sound reduction was mainly found from 125 Hz to 500 Hz octave band, and the maximum reduction was shown in the 250 Hz octave band.

Preparation of Wool/Poly(ethylene terephthalate) Composite Membrane and It's Dyeablities (모/폴리에틸렌테레프탈레이트 복합막의 제조와 염색성)

  • Kim, Gong-Ju;Shin, Hye Kyong;Park Mi-Ra;Kim, Kyong-Hi;Jeon, Jae-Hong
    • Textile Coloration and Finishing
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • Composite membranes having different mixing ratio of Wool(SCMK) and poly(ethylene terephthalate) (PET) were prepared by dissolving wool/PET in hexafluoro-2-propanol(HFIP), casting the obtained solution on a glass plate and evaporation the solvent in the presence and absence of an electric field. The internal structure of the prepared membrane was investigated using polarise microscope dyeing and dye permeation method. In the composite membrane prepared under electric field, both components were micro mixing, while in the membranes prepared under nonelectric field, the two components formed a random sea/island structure according to different mixing ratio. Such characteristic membrane structure was influenced the permeation behavior of C.I. Acid Red 118 through the membranes from an aqueous solution.

  • PDF

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA (다공성 매질에서 액화질소의 거동에 대한 연구)

  • Choi, S.W.;Lee, W.I.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.

Changes in Physical Properties of Fibrous Sound Absorption Materials According to the Manufacturing Time (제조시점에 따른 섬유상 흡음재의 물리적 특성 변화)

  • Jeong, Young-Sun;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.562-568
    • /
    • 2014
  • This study aimed to identify changes in the physical properties of artificial mineral-fiber materials used as building insulation that had been installed in the outer walls of buildings for a long time. To achieve this goal, glass fiber and rock wool were collected from outer walls in actual buildings and their acoustic and thermal performances were measured. These were compared with measurements from similar products manufactured recently. The results showed that old, used samples had a lower sound absorption coefficient compared to recently manufactured materials. The old samples also displayed increased compressibility compared to new materials. For example, the compressibility difference for glass wool was 7.32 mm. Old samples had a dynamic stiffness $1.28MN/m^3$ higher than new material samples. The thermal conductivity of both old and new samples increased within creasing temperature. They showed similar results at temperatures between 0 and $20^{\circ}C$.

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀룰로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-Oh;Kim, Kyoung-Woo;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-462
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose absorber has been developed with waste paper through adjustment of various mix proportions. The developed cellulose absorber has been tested for its acoustic properties such as absorption coefficient and dynamic stiffness. The absorption coefficient was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorption coefficient and 4.7 $MN/m^3$ was indicated in dynamic stiffness. Also, for practical use of developed absorbers as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool absorbers and constructed drywall of gypsum board. The results have shown 55 dB(Rw) of sound reduction index in glass-wool wall and 46 dB(Rw) in cellulose.