• Title/Summary/Keyword: ginsenoside contents

Search Result 314, Processing Time 0.03 seconds

The Production of Anti-cancer Substances by in vitro Grown Cultures of Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Park, Kyung-Hwa;Kim, Yong-Hae;Yoon, Eui-Soo;Kang, Tae-Jin;Park, Kwang-Tae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.46-57
    • /
    • 1999
  • Ginseng(Panax ginseng C.A. Meyer) is important medicinal plant but requires 4-year cultivation for root harvest because of slow growth. In contrast, ginseng callus and hairy roots grow vigorously and may Produce the same or more biologically active compounds for human health than natural ginseng roots. Therefore, ginseng callus and hairy roots can be used for commercial purposes. Polyacetylene, one of anti-cancer compounds in ginseng, was not detected in the callus cultured on the medium containing 2, 4-B, but cells derived from the callus growth was excellent, The ginseng calli cultured on the medium containing 2mg11 CPA and 0.05mg/1 BA was grown vigorously and produced panaxydol, one of ginseng polyacetylene. The biosynthesis of polyacetylene in callus was not affected by addition of NAA and sucrose in media. The SH medium was better than the MS medium for ginseng callus growth and biosynthesis of panaxydol. Another ginseng anti-cancer compounds, ginsenoside-Rg$_3$, Rh$_1$and Rh$_2$ were detected in ginseng hairy roots by heat treatment. Those of Panax ginseng were obtained after root disks of three-year old roots were infected with Agrobacterium rhizogenes Rl000 $A_4$T in dark condition after one month of culture. The optimum growth of hairy roots was achieved in the culture of 1/2 MS liquid medium in dark(22$^{\circ}C$) under 60 rpm gyratory shaking. Hairy roots grew well in 5 ι Erlenmeyer flasks, 1ι roller drums, 10ι jar-fermenters, and especially in 20ι air-lift .culture vessels. All heat treatments had remarkably different ginsenoside contents. Eleven ginsenosides were determined in heat treatment, eight in freeze dried hairy roots. Contents of ginsenoside-Rbl , Rb2, Rc, Rd. Re, Rf, and Rg$_1$tested in all heat treatments were less than those of freeze dried hairy roots. Contents of glnsenoside-Rg$_2$ in heat treatment for 1 hour at 105$^{\circ}C$ was 4.92mg/g dry wt, 3.9 times higher than 1.27 mg/g dry wt of freeze dried hairy roots. The optimum condition of heat treatment for the production of ginsenoside-Rg$_3$and Rhl was 2 hours at 105$^{\circ}C$, and ginsenoside content was 2.58mg/g dry wt and 3.62mg/g dry wt, respectively. The production of ginsenoside-Rh2 was the highest in heat treatment for 2 hours at 105$^{\circ}C$ among treatments examined, and ginsenoside-Rh$_2$content was 1.08mg/g dry wt.

  • PDF

Difference of Ginsenoside Contents in Roots Cultivated under Blue and Red Polyethylene Shading Net in Panax ginseng C. A. Meyer (청색과 적색 해가림 재배에 따른 인삼의 진세노사이드 함량 차이)

  • Lee, Sung-Woo;Kim, Geum-Soog;Park, Chung-Heon;Simon, James E.;Kim, Kwan-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.103-107
    • /
    • 2008
  • This study was carried out to investigate the effect of light quality on root yield and ginsenoside contents of 4-year-old ginseng by using the fourfold polyethylene shading net with different colors, blue and red color, compared to blue-black (3:1) mixed shading net as control. Control and blue shading net occurred higher root yield, especially, in tap root growth than red one, whereas transmitted quantum in red shading net was higher than those in blue one or control. However, red shading net caused the highest content of total ginsenoside, especially, Rg1 content, as compared to blue and control. We assumed that the increased content of ginsenoside is not caused by light quality such as red, but is due to the increase of relative ratio of ginsenoside in whole root tissue arising from the reduced root growth.

Enhancement of Low Molecular Ginsenoside Contents in Low Quality Fresh Ginseng by Fermentation Process (등외품 인삼(파삼)의 유산균 발효에 의한 저분자 진세노사이드 함량 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Song, Chi-Ho;Seo, Yong-Chang;Kim, Ji-Seon;Kim, Bo-Hyeon;Shin, Dae-Hyun;Yoon, Chang-Soon;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • This study compared the contents of low molecular ginsenoside according to fermentation process in low grade fresh ginseng. Low grade fresh ginseng was directly inoculated with a 24 h seed culture of $Bifidobacterium$ Longum B6., $Lactobacillus$ $casei$., and incubated at $36^{\circ}C$ for 72 h. $Bifidobacterium$ Longum B6 was specifically was found to show the best growth on $3,255{\times}10^6\;CFU/m{\ell}$ after 48 h of fermentation. The content of ginsenoside Rb1, Re and Rd were decreased with the fermentation but ginsenoside Rh2 and Rg2 increased after fermentation process. In the case of low molecular ginsenoside conversion yields were 56.07% of Rh2, 12.03% of Rg3 and 77.11% of Rg2, respectively. In addition, compound-K was irregular conversion yield as long as 72 h of fermentation. This results indicate that fermentation process could increase the low molecular ginsenoside in low grade fresh ginseng.

Comparison of Growth Increment and Ginsenoside Content in Different Parts of Ginseng Cultivated by Direct Seeding and Transplanting (직파와 이식재배에 따른 인삼의 부위별 생육특성 및 진세노사이드 함량 비교)

  • Li, Xiangguo;Kang, Sun-Joo;Han, Jin-Soo;Kim, Jung-Sun;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2010
  • This study was carried out to clarify the difference of growth characteristics and ginsenoside content in 5-year-old ginseng root grown by direct seeding and transplanting cultivation. Root weight per plant of direct seeding cultivation was lower than that of transplanting cultivation. Fresh and dry matter partitioning ratio of direct seeding cultivation was high in main root and low in lateral because direct seeding cultivation root elongated the length of main root, while it suppressed the growth of lateral root. Total amount of ginsenoside contents by direct seeding and transplanting cultivation were 362.8 and 320.3 mg in main root, 188.6 and 548.8 mg in lateral root, 170.7 and 273.8 mg in fine root. Its contents of whole root per plant were 722.1 and 1142.9 mg by direct seeding and transplanting, respectively.

Effects of Black Ginseng (9 Times-Steaming Ginseng) on Hypoglycemic Action and Changes in the Composition of Ginsenosides on the Steaming Process (흑삼(구증구포인삼)이 혈당 강하에 미치는 영향 및 증포별 ginsenoside 조성 변화)

  • Kim, Suong-Nuen;Kang, Shin-Jyung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • This study examined the effects of black ginseng (9 times-steamed ginseng) on hypoglycemic action in streptozotocininduced diabetic rats as well as changes in ginsenoside composition by the steaming process. As the number of steaming cycles increased, the amounts of crude saponin and most ginsenoside contents decreased, while the amount of ginsenoside- Rg3 and the ratio of PD/PT (=[$Rb_1+Rb_2+Rc+Rd+Rg_3]/[Re+Rb_1+Rh_1]$) increased. This ginsenoside composition is a unique characteristic compared to other types of ginseng products. In order to investigate the hypoglycemic effect of the black ginseng extract, in vivo studies were performed in rats with streptozotocin-induced diabetes. The studies showed that the administration of the black ginseng extract decreased high blood glucose levels (more than 300 mg/dL) to a normal level (102 mg/dL). These results suggest that this black ginseng extract has a significant hypoglycemic effect and can be used as an anti-diabetic substance for dietary supplements or new drugs.

Enhancement of Ginsenosides Conversion Yield by Steaming and Fermentation Process in Low Quality Fresh Ginseng (증숙 발효 공정에 의한 파삼의 진세노사이드 전환 수율 증진)

  • Choi, Woon Yong;Lim, Hye Won;Choi, Geun Pyo;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • This study was performed to enhance contents of low molecular ginsenoside using steaming and fermentation process in low quality fresh ginseng. For increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng, a steaming process was applied at $90^{\circ}C$ for 12 hr which was followed by fermentation process at Lactobacillus rhamnosus HK-9 incubated at $36^{\circ}C$ for 72 h. The contents of ginsenoside Rg1, Rb1, Rc, Re and Rd were decreased with the steaming associated with fermentation process but ginsenoside Rg2, Rg3, Rh2 and CK increased after process. It was found that under the steaming associated with fermentation process, low molecule ginsenosides such as Rg2, Rg3, Rh2 and CK were increased as 3.231 mg/g, 2.585 mg/g and 1.955 m/g and 2.478 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the low quality fresh ginseng treated by the complex process was 0.11 ppm but it was 0.22 ppm when it was treated with the steaming process. This result could be caused by that the most efficiently breakdown of 1,2-glucoside and 1,4-glucoside linkage to backbone of ginsenosides by steaming associated with fermentation process. This results indicate that steaming process and fermenration process can increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng.

Effects of Spraying Lime-Bordeaux Mixture on Yield, Ginsenoside, and 70% Ethanol Extract Contents of 3-Year-Old Ginseng in Panax ginseng C. A. Meyer (석회보르도액 처리가 3년생 인삼의 생육과 진세노사이드 및 엑스 함량에 미치는 영향)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.4
    • /
    • pp.244-247
    • /
    • 2010
  • It's crucial to control Alternaria blight and Anthracnose emerging mostly on ginseng leaves during the rainy season to increase the organic ginseng products. The purpose of this study is to investigate the efficay of lime-brodeaux spray on the ginseng leaves and evaluate the growth and yield of the ginseng, and the contents of ginsenoside and 70% ethanol extracts from 3-year-old ginseng variety, Cheonpoong. Lime-bordeaux sprayings were conducted in the ratio of 6-6 in June, 8-8 from July to September every 15 days. After June 10, the spraying have no effects on the growth leaf and stem, and there was no significant increase in chlorophyll contents. The ratio of intact leaf and root were distinctly increased because Alternaria blight and Anthracnose were decreased by spraying lime-bordeaux mixture. Root weight per plant and root yield were increased by 15%, and 62% in 3-year old ginseng, respectively, because the ratio of intact leaf and root were higher by using lime-bordeaux mixture. Furthermore, spraying of lime-bordeaux mixture is prone to increase the ratio of rusty root in ginseng. Spraying of lime-bordeaux mixture decreased both of the contents of ginsenoside and 70% ethanol extract by 13.7%, and 15.2% in 3-year-old ginseng, respectively.

An Isolation of Crude Saponin from Red-Ginseng Efflux by Diaion HP-20 Resin Adsorption Method (홍삼유출액으로부터 Diaion HP-20 수지 흡착법에 의한 조사포닌의 분리)

  • 곽이성;경종수;김시관;위재준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This study was carried out to isolate saponin compounds from red-ginseng efflux, which was produced during the industrial processing of red-ginseng from fresh ginseng. We isolated crude saponin from the efflux extract (moisture content 35.0%) by using Diaion HP-20 adsorption method. Non-saponin fraction, which was adsorbed on Diaion HP-20 resin, was removed by eluating with $H_{2}O$ and 25% spirit. Then crude saponin was eluated with 95% spirit, continuously. Saponin in the eluated fractions was confirmed by TLC analysis. Crude saponin isolated from red ginseng efflux extract contained 12.10% of saponin. whereas those of white ginseng and red-ginseng were 3.30 and 3.39%, respectively. Ginsenoside contents showed the highest contents kin crude saponin from red ginseng efflux extract. Expacilly, the ginsenoside-$Rb_{1}$ and Re showed the highest contents in red-ginseng efflux extract when compared with those of white ginseng and red ginseng crude saponins. And the other ginsenosides except ginsenoside-$Rb_{1}$ and -Re also showed the highest contents in red ginseng efflux extract. However, the ratio of PD saponin (Panaxadiol saponin: $Rb_{1}+Rb_{2}$+Rc+Rd) to PT saponin (panaxatriol: $Re+Rg_{1}$) showed almost the same level when compared with those of ginseng saponin fractions. Ratio of PD/PT from red ginseng efflux extract was 1.99. Ratios of PD/PT from white ginseng and red ginseng were 1.85 and 1.84, respectively. Saponin purity, which was calculated by ratio percent of total ginsenoside to curde saponin content, was 45.90%. In case of white ginseng and red ginseng, the purities were 35.50 and 36.00%, respectively. However, by PHLC analysis, we confirmed that crude saponin isolated from red ginsengs. It suggested that crude saponin isolated from red ginseng ellux also would be useful component as ginseng saponins.

  • PDF

Metabolite Analysis of Panax ginseng C. A. Meyer by HPLC According to Root Age

  • Shin, Yoo-Su;Lee, Min-Jeong;Bang, Kyong-Hwan;Kim, Seon-Young;Lee, Sung-Sik;Hyun, Dong-Yoon;An, Tae-Jin;Cha, Seon-Woo;Seong, Nak-Sul
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.636-640
    • /
    • 2007
  • In order to investigate the major metabolite patterns of aged Panax ginseng C.A. Meyer roots, the ginsenoside contents for white ginseng roots of various ages were compared. The 1-year to 6-year old roots were extracted with methanol, and then the methanol-soluble metabolites were analyzed by high performance liquid chromatography (HPLC). The metabolite contents of the 1-year and 2-year roots, including the ginsenosides and minor components, were not different, but the $Rg_1$, Re, and Rc ginsenoside contents between the 2-year and 3-year roots showed significant differences. $Rg_1$ and Rc increased significantly in the 1-year to 2-year roots, and Re increased significantly from the 3-year root age. Rd increased slightly until the 2-year age and decreased from the 3-year age. Based on the ginsenoside distributions and contents at various root ages, we have suggested 2 biogenesis schemes using the ginsenosides that have been isolated from the roots of P. ginseng so far.

Effect of Processing Methods on the Saponin Contents of Panax ginseng Leaf-Tea (고려인삼엽차의 제조방법에 따른 사포닌 성분의 함량 및 조성)

  • 장현기
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Panax ginseng leaf tea was developed for the functional benefit of health, preference and convenience. The leaves of 4-year-old ginseng were selected in July and August. The ginseng leaf was treated by three methods : heat processed tea(HPT), aged tea(AGT) and hot-air dried tea(DRT). The contents and compositions of their crude saponin of ginseng leaves were measured. 1. The content of crude saponin of HPT was the higher than other treatments. The content of HPT was 18.72∼18.82%, ACT 18.24∼18.29% and DRT 17.02∼17.17%. 2. The harvest time and treatment methods were not affect the composition of ginsenoside in ginseng leaf tea. The ginsenoside-Re was shown the highest value as 1.97∼2.15. And ginsenoside-Rd was 1.48∼1.79, -Rg$_1$ 1.33∼1.58 and -Rb, -Rb$_2$, -Rc in the order. 3. The content of protopanaxadiol(PD) and protopanaxatriol(PT) was shown that DRT was 1.11∼1.13, HPT 1.09~l.12 and AGT 0.92∼1.02. The content of PD and PT were shown similar result at any harvest time. 4. The contents of crude saponin extracted by hot-water at 5 min was the higher ratios in HPT and harvested in July than other treatments. The content of crude saponin of ginseng leaf harvested in July was 15.88% and HPT was 16.88%. The order of contents of ginsenoside were -Re, -Rd, -Rg$_1$, -Rb$_1$, -Rb$_2$, and - Rc. The extraction ratio of crude saponin extracted by the circulated extraction method in 8 hours and 5 min extraction were 81.74∼84.38%. And HPT of ginseng leaf harvested in July was the highest value 84.3% but the extraction ratio of ginsenoside was 78.00~88.13%. But the extraction ratio of ginsenoside was similar trend in all treatments.