• Title/Summary/Keyword: ginsenoside Rh3

Search Result 217, Processing Time 0.029 seconds

Anti-obesity Effects of Water and Ethanol Extracts of Black Ginseng (흑삼의 열수 및 에탄올 추출물의 항비만 효과)

  • Park, Hye-Jin;Kim, Ae-Jung;Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.314-323
    • /
    • 2015
  • Black ginseng was made by steaming raw white ginseng nine times at $100^{\circ}C$ for 2 h and drying. We then performed pilot experiments using the nine black ginseng extracts for different steaming and drying times to determine their anti-obesity effects. Two ginseng extracts, steaming and drying five times (FSFD) and steaming and drying nine times (NSND), prepared in water or ethanol solution decreased lipid accumulation of 3T3-L1 cells. FSFD in water and ethanol extracts showed higher levels of ginsenosides, in particular, Rh1, Rg2, and Rb1 than NSND, and levels of the three ginsenosides were higher in ethanol extracts than in water extracts. Treatment with FSFD and/or NSND in ethanol extracts significantly regulated $PPAR{\gamma}$, C/$EBP{\alpha}$ and AMPK phosphorylation in 3T3-L1 cells. We verified doubling time of stem cells from both abdominal fat and subcutaneous fat after FSFD and NSND in ethanol and water extracts were added. Although addition of FSFD and NSFD in water extracts had no effects on proliferation, ethanol extracts with FSFD and NSND increased doubling time of stem cells in subcutaneous fat. FSFD and NSND in ethanol extracts more effectively reduced adipogenesis compared to those in water extracts. FSFD in ethanol extracts promoted secretion of anti-inflammatory cytokine such as IL-10 and depressed MCP-1 infiltration in 3T3-L1 preadipocytes co-cultured with RAW264.7 cells. We concluded that FSFD and NSND ethanol extracts may be developed as a functional food for its anti-obesity effect, but anti-inflammatory effect was shown in ethanol extracted FSFD rather than in NSND.

High Pressure Extraction Process of Low Quality Fresh Ginseng for Enhancing Anticancer Activities (파삼의 항암활성 증진이 가능한 고압 추출 공정)

  • Ha, Ji-Hye;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Jeong, Heon-Sang;Jeong, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.397-406
    • /
    • 2009
  • The low quality fresh ginseng was extracted by water at $80^{\circ}C$ and 240 bar for 20 min (HPE, High pressure extraction process). The cytotoxicity on human normal kidney cell (HEK293) and human normal lung cell (HEL299) of the extracts from HPE showed 28.43% and 21.78% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of $1.0\;mg/m{\ell}$. The human breast carcinoma cell and lung adenocarcinoma cell growth were inhibited up to about 86%, in adding $1.0\;mg/m{\ell}$ of extracts from HPE. This values were 9-12% higher than those from conventional water extraction. On in vivo experiment using ICR mice, the variation of body weight of mice group treated fresh ginseng extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The extracts from HPE was showed longer survival times as 35.65% than that of the control group, and showed the highest tumor inhibition activities compared with other group, which were 70.64% on Sarcoma-180 solid tumor cells. On the high performance liquid chromatogram (HPLC), amount of ginsenoside-$Rg_2$, $Rg_3$, $Rh_1$ and $Rh_2$ on fresh ginseng were increased up to 43-183% by HPE, compared with conventional water extracts. These data indicate that HPE definitely plays an important role in effectively extracting ginsenoside, which could result in improving anticancer activities. It can be concluded that low quality fresh ginseng associated with this process has more biologically compound and better anticancer activities than that from normal extraction process.

Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of truncated Cdc6 and apoptosis

  • Yim, Hyung-Shin;Jin, Ying-Hua;Park, Byoung-Duck;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.71.1-71.1
    • /
    • 2003
  • We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3-mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or TRAIL. The cleavage occurs at the SEVD$\^$442//G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence (NES). Cdc6 is known to be phosphorylated by cyclin A-Cyclin A-dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. (omitted)

  • PDF

20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3

  • Siyu Cheng;Langqun Chen;Jiahui Ying;Ying Wang;Wenjuan Jiang;Qi Zhang;Hong Zhang;Jiahe Wang;Chen Wang;Huimin Wu;Jing Ye;Liang Zhang
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.298-309
    • /
    • 2024
  • Background: 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods: Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results: Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions: This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.

Effect of Ginsenosides from Panax ginseng on Proliferation of Human Osteosarcoma Cell $U_2OS$

  • Deqiang Dou;Jie Ren;Yingjie Chen;Youwei Zhang;Xinsheng Yao
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.376-384
    • /
    • 2002
  • Object To find out which of the 27 ginsenosides isolated from Panax ginseng C.A. Mey that may inhibit the proliferation of human osteosaocoma cell line $U_2OS$. Methods Effects of each individual ginsenoside on the proliferation of $U_2OS$ cell were studied by determining the viability of cancer cells during culture with or without the presence of the test compound. DNA assay was determined by flow cytometry. Results Ginsonosides -Ro, $-Rh_l,\;-Rh_2,\;-F_1\;and\;-L_8$ at concentrations of 5 ,umol/L could obviously suppress the proliferation of $U_2OS$ cells while ginsenosides $-Rg_1,\;-F_3,$ -Rf, PPT and PT significantly inhibited the cancer cells. Flow cytometry revealed that ginsenosides $-Ro,-Rg_1-Rf,-F_1-Rh_2,PPT$ and PT induced cell cycle arrest at $G_0/G_1$ phase with obvious decrease of cell count at Sand $G_2+M$ phase, Moreover, ginsenosides $-Rf_1,-Rg_1,\;-F_1$ and PPT induced significantly high rates of cell death as compared with the control. Conclusion These data suggested that ginsenosides inhibited $U_2OS$ proliferation Via cell cycle arrest or induction of cell death.

  • PDF

Qualify Characteristics of Baechukimchi Added Ginseng during Fermentation Periods (인삼이 첨가된 배추김치의 발효중 품질 특성)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Park, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1444-1448
    • /
    • 2006
  • This study was investigated for quality characteristics of Baechukimchi with ginseng during fermentation. For Baechukimchi preparation, original ingredients of Baechukimchi and high contents of ginseng were used. In the initial pH and titratable acidity of each samples, ginseng -added Kimchi showed a little higher value than pH 5.48 and 0.25% acidity of the control Kimchi. Ginseng-added Kimchi showed higher values of total microbes $(1.90\times10^6\sim2.93\times10^6)$ and lactic acid bacteria $(2.21\times10^6\sim2.62\times10^6)$ than the control Kimchi. The control Kimchi was total microbes of $1.59\times10^5$ and lactic acid bacteria of $7.60\times10^4$. According to fermentation periods, ginseng-added Kimchi showed decrease of pH and increase of titratable acidity than the control Kimchi, but it. was not different for the microbes between Kimchi samples. In the taste intensity of sensory evaluation, ginseng-added Kimchi was evaluated higher value than the control Kimchi and kept up texture, properties of initial preparation between samples during fermentation periods. In the crude saponin content, raw ginseng was 5.89% by dry basis and it was decreased to 3.74% after fermentation. And the individual ginsenosides content of Re, $Rg_1$, Rf, $Rg_2,\;Rh_1,\;Rb_1,$, Rc, $Rb_2$, Rd, $Rg_3$, but $Rg_3$ were decreased and $Rh_1$ were increased from 16.6 mg%, and 22.2 mg/% to 59.2 mg%, and 39.4 mg%, respectively.

Development of Fermentation Process of Ginseng Leaf Extraction Probiotic Strain and Characterization of Product Quality (프로바이오틱 균주에 의한 인삼 잎 추출물 발효공정 확립 및 생성물의 품질 특성분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1213-1223
    • /
    • 2018
  • This study was carried out to investigate extraction efficiency by microwave for extraction of pesticide residues and the bioconversion of ginsenosides of ginseng leaf by using various lactic acid bacteria in order to promote the utilization of ginseng leaf. The hexane extraction by microwave of tolclofos-methyl and azoxystrobin in ginseng leaf was efficient. The optimal condition for extraction of tolclofos-methyl and azoxystrobin in ginseng leaf by microwave was 50 to 95 watts of power supply, 3 minutes of extraction.The gisenosides Rg1 and Rb1 contents have decreased, while the Rh1, Rg3, Rk1 and Rh2 have increased due to fermentation. The ginsenosides Rg3 of the fermented ginseng leaf has increased and the contents were $70.62{\sim}77.61{\mu}g/g$(control $2.77{\mu}g/g$). The total phenolic acid content and electron donating ability of the ginseng leaf have totally decreased after 7 days of fermentation. The total phenolic acid contents of the fermented ginseng leaf with various lactic acid bacteria did not show any tendency as different strains.

Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides $Rg_3$, $Rg_5$, and $Rk_1$ by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside $Rh_1$, proto- and panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.

The two-tiered activation of JNK1 prolongs cell survival prior to induced apoptosis

  • Chun, Kwang-Hoon;Ham, Young-Mi;Park, Joon-Seok;Kim, Dong-Hyun;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.165.3-166
    • /
    • 2003
  • The c-Jun N-terminal kinase (JNK) plays essential roles in apoptosis and cell survival. Because apoptosis is promoted by blocking the MEK kinase1-mediated activation of JNK1, we tested whether JNK1 plays dual roles in apoptosis. We show here that JNK1 activity is differentially up-regulated in a two-tiered fashion by specific mechanisms during taxol- or ginsenoside Rh2-induced apoptosis. The early phase of JNK1 activation, but not apoptosis is prevented by expressing the dominant negative SEK1 mutant. (omitted)

  • PDF

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.