DOI QR코드

DOI QR Code

Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng

  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University)
  • Received : 2011.10.01
  • Accepted : 2011.10.31
  • Published : 2012.01.11

Abstract

The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides $Rg_3$, $Rg_5$, and $Rk_1$ by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside $Rh_1$, proto- and panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.

Keywords

References

  1. Li CP, Li RC. An introductory note to ginseng. Am J Chin Med (Gard City N Y) 1973;1:249-261. https://doi.org/10.1142/S0192415X73000279
  2. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003;75:687-700. https://doi.org/10.1016/S0091-3057(03)00126-6
  4. Singh VK, Agarwal SS, Gupta BM. Immunomodulatory activity of Panax ginseng extract. Planta Med 1984;50:462-465. https://doi.org/10.1055/s-2007-969773
  5. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp Clin Res 1990;16:537-542.
  6. Garriques SS. On panaquilon, a new vegetable substance. Ann Chem Pharm 1854;90:231-234. https://doi.org/10.1002/jlac.18540900216
  7. Shibata S, Tanaka O, NagaI M, Ishit T. Studies on the constituents of Japanese and Chinese crude drugs. XII. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:762-765. https://doi.org/10.1248/cpb.11.762
  8. Shibata S, Ando T, Tanaka O, Meguro Y, Sôma K, Iida Y. Saponins and sapogenins of Panax ginseng C.A. Meyer and some other Panax spp. Yakugaku Zasshi 1965;85:753-755.
  9. Shibata S, Tanaka O, Soma K, AandoT, Iida Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;42:207-213.
  10. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  11. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  12. Yuan CS, Wang CZ, Wicks SM, Qi LW. Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 2010;34:160-167. https://doi.org/10.5142/jgr.2010.34.3.160
  13. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-761. https://doi.org/10.1248/cpb.11.759
  14. Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M. Chemical studies on crude drug processing. V. On the constituents of ginseng radix rubra (2): comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi 1987;107:495-505.
  15. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies of crude drugs (1). Constituents of ginseng radix rubra. Yakugaku Zasshi 1983;103:612-622.
  16. Haruyo K, Shuichi S, Yoshiteru I, Junzo S. Studies on the saponins of ginseng. IV. On the structure and enzymatic hydrolysis of ginsenoside Ra1. Chem Pharm Bull 1982;30:2393-2398. https://doi.org/10.1248/cpb.30.2393
  17. Ruan CC, Liu Z, Li X, Liu X, Wang LJ, Pan HY, Zheng YN, Sun GZ, Zhang YS, Zhang LX. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng. Molecules 2010;15:2319-2325. https://doi.org/10.3390/molecules15042319
  18. Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF. Protopanaxatriol-type ginsenosides from the root of Panax ginseng. J Agric Food Chem 2011;59:200-205. https://doi.org/10.1021/jf1037932
  19. Hiromichi B, Ryoji K, Yuhichiro S, Tohru F. Ginsenoside $Ra_1$ and ginsenoside $Ra_2$, new dammarane-saponins of ginseng roots. Chem Pharm Bull 1982;30:2380-2385. https://doi.org/10.1248/cpb.30.2380
  20. Kasai R, Besso H, Tanaka O, Saruwatani Y, Fuwa T. Saponins of red ginseng. Chem Pharm Bull 1983;31:2120-2125. https://doi.org/10.1248/cpb.31.2120
  21. Ryu JH, Park JH, Kim TH, Sohn DH, Kim JM, Park JH. A genuine dammarane glycoside, (20E)-ginsenoside F4 from Korean red ginseng. Arch Pharm Res 1996;19:335-336. https://doi.org/10.1007/BF02976251
  22. Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI. Ginsenoside $Rh_{4}$, a genuine dammarane glycoside from Korean red ginseng. Planta Med 1996;62:86-87. https://doi.org/10.1055/s-2006-957816
  23. Baek NI, Kim JM, Park JH, Ryu JH, Kim DS, Lee YH, Park JD, Kim SI. Ginsenoside Rs(3), a genuine dammarane-glycoside from Korean red ginseng. Arch Pharm Res 1997;20:280-282. https://doi.org/10.1007/BF02976158
  24. Park JD, Lee YH, Kim SI. Ginsenoside $Rf_2$, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 1998;21:615-617. https://doi.org/10.1007/BF02975384
  25. Shoji Y, Kiyoko K, Osamu T. Further study on dammarane- type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C.A. Meyer. Chem Pharm Bull 1979;27:88-92. https://doi.org/10.1248/cpb.27.88
  26. Shoji Y, Kiyoko M, Ryoji K, Osamu T. Saponins of buds and fl owers of Panax ginseng C. A. Meyer. (1). Isolation of ginsenosides-Rd, -Re, and -$Rg_1$. Chem Pharm Bull 1976;24:3212-3213. https://doi.org/10.1248/cpb.24.3212
  27. Zhang S, Takeda T, Zhu T, Chen Y, Yao X, Tanaka O, Ogihara Y. A new minor saponin from the leaves of Panax ginseng. Planta Med 1990;56:298-300. https://doi.org/10.1055/s-2006-960963
  28. Dou DQ, Chen YJ, Liang LH, Pang FG, Shimizu N, Takeda T. Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 2001;49:442-446. https://doi.org/10.1248/cpb.49.442
  29. Qiu F, Ma ZZ, Xu S, Yao XS, Chen YJ, Che ZT. Studies on dammarane-type saponins in the fl ower-buds of Panax ginseng C.A. Meyer. J Asian Nat Prod Res 1998;1:119-123. https://doi.org/10.1080/10286029808039853
  30. Tung NH, Song GY, Park YJ, Kim YH. Two new dammarane- type saponins from the leaves of Panax ginseng. Chem Pharm Bull 2009;57:1412-1414. https://doi.org/10.1248/cpb.57.1412
  31. Liu GY, Li XW, Wang NB, Zhou HY, Wei W, Gui MY, Yang B, Jin YR. Three new dammarane-type triterpene saponins from the leaves of Panax ginseng C.A. Meyer. J Asian Nat Prod Res 2010;12:865-873. https://doi.org/10.1080/10286020.2010.508035
  32. Wu LJ, Wang LB, Gao HY, Wu B, Song XM, Tang ZS. A new compound from the leaves of Panax ginseng. Fitoterapia 2007;78:556-560. https://doi.org/10.1016/j.fitote.2007.06.002
  33. Huang J, Tang XH, Ikejima T, Sun XJ, Wang XB, Xi RG, Wu LJ. A new triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the caspase signaling pathway in the HepG2 cell line. Arch Pharm Res 2008;31:323-329. https://doi.org/10.1007/s12272-001-1159-8
  34. Tung NH, Song GY, Minh CV, Kiem PV, Jin LG, Boo HJ, Kang HK, Kim YH. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem Pharm Bull (Tokyo) 2010;58:1111-1115. https://doi.org/10.1248/cpb.58.1111
  35. Tung NH, Quang TH, Son JH, Koo JE, Hong HJ, Koh YS, Song GY, Kim YH. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPSstimulated IL-12 production in bone marrow-derived dendritic cells. Arch Pharm Res 2011;34:681-685. https://doi.org/10.1007/s12272-011-0419-2
  36. Yoshikawa M, Sugimoto S, Nakamura S, Sakumae H, Matsuda H. Medicinal flowers. XVI. New dammaranetype triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem Pharm Bull (Tokyo) 2007;55:1034-1038. https://doi.org/10.1248/cpb.55.1034
  37. Yoshikawa M, Sugimoto S, Nakamura S, Matsuda H. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from fl ower buds of Panax ginseng. Chem Pharm Bull (Tokyo) 2007;55:571-576. https://doi.org/10.1248/cpb.55.571
  38. Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH. Dammarane-type saponins from the fl ower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 2010;20:309-314. https://doi.org/10.1016/j.bmcl.2009.10.110
  39. Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK et al. Dammarane- type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 2010;58:868-874. https://doi.org/10.1021/jf903334g
  40. Zhao JM, Li N, Zhang H, Wu CF, Piao HR, Zhao YQ. Novel dammarane-type sapogenins from Panax ginseng berry and their biological activities. Bioorg Med Chem Lett 2011;21:1027-1031. https://doi.org/10.1016/j.bmcl.2010.12.035
  41. Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and hplc comparisons of seeds and flesh. Chem Pharm Bull (Tokyo) 2009;57:283-287. https://doi.org/10.1248/cpb.57.283
  42. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med 1984;50:434-436. https://doi.org/10.1055/s-2007-969757
  43. Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:69-74. https://doi.org/10.1016/0378-8741(85)90030-3
  44. Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:255-259. https://doi.org/10.1016/0378-8741(85)90091-1
  45. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16:22-25. https://doi.org/10.1248/bpb.16.22
  46. Tomoda M, Hirabayashi K, Shimizu N, Gonda R, Ohara N, Takada K. Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16:1087-1090. https://doi.org/10.1248/bpb.16.1087
  47. Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K. Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull (Tokyo) 1989;37:1279-1281. https://doi.org/10.1248/cpb.37.1279
  48. Iwabuchi H, Yoshikura M, Ikawa Y, Kamisako W. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. Isolation and structure determination of sesquiterpene alcohols, panasinsanols A and B. Chem Pharm Bull (Tokyo) 1987;35:1975-1981. https://doi.org/10.1248/cpb.35.1975
  49. Iwabuchi H, Yoshikura M, Kamisako W. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. II. Isolation and structure determination of ginsenol, a novel sesquiterpene alcohol. Chem Pharm Bull (Tokyo) 1988;36:2447-2451. https://doi.org/10.1248/cpb.36.2447
  50. Iwabuchi H, Kato N, Yoshikura M. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. IV. Chem Pharm Bull (Tokyo) 1990;38:1405-1407. https://doi.org/10.1248/cpb.38.1405
  51. Chen J, Zhao R, Zeng YM, Meng H, Zuo WJ, Li X, Wang JH. Three new triterpenoid saponins from the leaves and stems of Panax quinquefolium. J Asian Nat Prod Res 2009;11:195-201. https://doi.org/10.1080/10286020802682734
  52. Jiang HP, Qiu YK, Cheng DR, Kang TG, Dou DQ. Structure elucidation and complete NMR spectral assignments of two new dammarane-type tetraglycosides from Panax quinquefolium. Magn Reson Chem 2008;46:786-790. https://doi.org/10.1002/mrc.2247
  53. Li GY, Zeng YM, Meng H, Li X, Wang JH. A new triterpenoid saponin from the leaves and stems of Panax quinquefolium L. Chin Chem Lett 2009;20:1207-1210. https://doi.org/10.1016/j.cclet.2009.05.017
  54. Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from fl ower buds of American ginseng, Panax quinquefolium L. Chem Pharm Bull (Tokyo) 2007;55:1342-1348. https://doi.org/10.1248/cpb.55.1342
  55. Wang JH, Li W, Sha Y, Tezuka Y, Kadota S, Li X. Triterpenoid saponins from leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 2001;3:123-130. https://doi.org/10.1080/10286020108041379
  56. Yoshikawa M, Murakami T, Yashiro K, Yamahara J, Matsuda H, Saijoh R, Tanaka O. Bioactive saponins and glycosides. XI. Structures of new dammarane-type triterpene oligoglycosides, quinquenosides I, II, III, IV, and V, from American ginseng, the roots of Panax quinquefolium L. Chem Pharm Bull (Tokyo) 1998;46:647-654. https://doi.org/10.1248/cpb.46.647
  57. Du XW, Wills RB, Stuart DL. Changes in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chem 2004;86:155-159. https://doi.org/10.1016/j.foodchem.2003.11.003
  58. Xie G, Plumb R, Su M, Xu Z, Zhao A, Qiu M, Long X, Liu Z, Jia W. Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J Sep Sci 2008;31:1015-1026. https://doi.org/10.1002/jssc.200700650
  59. Ren G, Chen F. Degradation of ginsenosides in American ginseng (Panax quinquefolium) extracts during microwave and conventional heating. J Agric Food Chem 1999;47:1501-1505. https://doi.org/10.1021/jf980678m
  60. Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC et al. Steamed American ginseng berry: ginsenoside analyses and anticancer activities. J Agric Food Chem 2006;54:9936-9942. https://doi.org/10.1021/jf062467k
  61. Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med 2007;73:669-674. https://doi.org/10.1055/s-2007-981524
  62. Qiu YK, Dou DQ, Cai LP, Jiang HP, Kang TG, Yang BY, Kuang HX, Li MZ. Dammarane-type saponins from Panax quinquefolium and their inhibition activity on human breast cancer MCF-7 cells. Fitoterapia 2009;80:219-222. https://doi.org/10.1016/j.fitote.2009.01.011
  63. Wang M, Guilbert LJ, Li J, Wu Y, Pang P, Basu TK, Shan JJ. A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFN-gamma productions in murine spleen cells induced by Con-A. Int Immunopharmacol 2004;4:311-315. https://doi.org/10.1016/j.intimp.2003.12.002
  64. Oshima Y, Sato K, Hikino H. Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod 1987;50:188-190. https://doi.org/10.1021/np50050a010
  65. Christensen LP, Jensen M, Kidmose U. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by highperformance liquid chromatography. J Agric Food Chem 2006;54:8995-9003. https://doi.org/10.1021/jf062068p
  66. Baranska M, Schulz H, Christensen LP. Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. J Agric Food Chem 2006;54:3629-3635. https://doi.org/10.1021/jf060422d
  67. Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull (Tokyo) 2003;51:1314-1317. https://doi.org/10.1248/cpb.51.1314
  68. Wang CZ, McEntee E, Wicks S, Wu JA, Yaun CS. Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen. J Nat Med 2006;60:97-106. https://doi.org/10.1007/s11418-005-0027-x
  69. Zhu S, Zou K, Fushimi H, Cai S, Komatsu K. Comparative study on triterpene saponins of ginseng drugs. Planta Med 2004;70:666-677. https://doi.org/10.1055/s-2004-827192
  70. Yoshikawa M, Morikawa T, Yashiro K, Murakami T, Matsuda H. Bioactive saponins and glycosides. XIX. Notoginseng (3): immunological adjuvant activity of notoginsenosides and related saponins: structures of notoginsenosides-L, -M, and -N from the roots of Panax notoginseng (Burk.) F. H. Chen. Chem Pharm Bull (Tokyo) 2001;49:1452-1456. https://doi.org/10.1248/cpb.49.1452
  71. Yoshikawa M, Murakami T, Ueno T, Yashiro K, Hirokawa N, Murakami N, Yamahara J, Matsuda H, Saijoh R, Tanaka O. Bioactive saponins and glycosides. VIII. Notoginseng (1): new dammarane-type triterpene oligoglycosides, notoginsenosides-A, -B, -C, and -D, from the dried root of Panax notoginseng (Burk.) F.H. Chen. Chem Pharm Bull (Tokyo) 1997;45:1039-1045. https://doi.org/10.1248/cpb.45.1039
  72. Chen Y, Sorensen LK. Determination of marker constituents in radix Glycyrrhizae and radix Notoginseng by near infrared spectroscopy. Fresenius J Anal Chem 2000;367:491-496. https://doi.org/10.1007/s002160000356
  73. Wei JX, Wang LA, Du H, Li R. Isolation and identifi cation of sanchinoside B1 and B2 from rootlets of Panax notoginseng (Burk.) F. H. Chen. Yao Xue Xue Bao 1985;20:288-293.
  74. Wei JX, Wang JF, Chang LY, Du YC. Chemical studies of san-chi Panax notoginseng (Burk.) F. H. Chen. I. Studies on the constituents of San-Chi root hairs. Yao Xue Xue Bao 1980;15:359-364.
  75. Wei JX, Liangyu C, Jufen W, Friedrichs E, Jores M, Puff H, Breitmaier E. Two new dammaran sapogenins from leaves of Panax notoginseng. Planta Med 1982;45:167-171. https://doi.org/10.1055/s-2007-971367
  76. Cui XM, Jiang ZY, Zeng J, Zhou JM, Chen JJ, Zhang XM, Xu LS, Wang Q. Two new dammarane triterpene glycosides from the rhizomes of Panax notoginseng. J Asian Nat Prod Res 2008;10:845-849. https://doi.org/10.1080/10286020802144776
  77. Wan JB, Zhang QW, Hong SJ, Guan J, Ye WC, Li SP, Lee MY, Wang YT. 5,6-Didehydroginsenosides from the roots of Panax notoginseng. Molecules 2010;15:8169-8176. https://doi.org/10.3390/molecules15118169
  78. Liu Y, Li J, He J, Abliz Z, Qu J, Yu S, Ma S, Liu J, Du D. Identifi cation of new trace triterpenoid saponins from the roots of Panax notoginseng by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2009;23:667-679. https://doi.org/10.1002/rcm.3917
  79. Wang W, Rayburn ER, Hang J, Zhao Y, Wang H, Zhang R. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD. Lung Cancer 2009;65:306-311. https://doi.org/10.1016/j.lungcan.2008.11.016
  80. Zhao Y, Wang W, Han L, Rayburn ER, Hill DL, Wang H, Zhang R. Isolation, structural determination, and evaluation of the biological activity of 20(S)-25-methoxyldammarane- 3beta, 12beta, 20-triol [20(S)-25-OCH3-PPD], a novel natural product from Panax notoginseng. Med Chem 2007;3:51-60. https://doi.org/10.2174/157340607779317508
  81. Wang JR, Yamasaki Y, Tanaka T, Kouno I, Jiang ZH. Dammarane-type triterpene saponins from the fl owers of Panax notoginseng. Molecules 2009;14:2087-2094. https://doi.org/10.3390/molecules14062087
  82. Sun S, Wang CZ, Tone R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS. Effects of steaming the root of Panax notoginseng on chemical composition and anticancer activities. Food Chem 2010;118:307-314. https://doi.org/10.1016/j.foodchem.2009.04.122
  83. Teng RW, Li HZ, Wang DZ, Yang CR. Hydrolytic reaction of plant extracts to generate molecular diversity: new dammarane glycosides from the mild acid hydrolysate of root saponins of Panax notoginseng. Helv Chim Acta 2004;87:1270-1278. https://doi.org/10.1002/hlca.200490116
  84. Ohtani K, Mizutani K, Hatono S, Kasai R, Sumino R, Shiota T, Ushijima M, Zhou J, Fuwa T, Tanaka O. Sanchinan-A, a reticuloendothelial system activating arabinogalactan from sanchi-ginseng (roots of Panax notoginseng). Planta Med 1987;53:166-169. https://doi.org/10.1055/s-2006-962664
  85. Choi RC, Zhu JT, Leung KW, Chu GK, Xie HQ, Chen VP, Zheng KY, Lau DT, Dong TT, Chow PC et al. A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-beta-induced neurotoxicity in cultured neurons: signaling transduction and drug development for Alzheimer's disease. J Alzheimers Dis 2010;19:795-811.
  86. Liu JH, Lee CS, Leung KM, Yan ZK, Shen BH, Zhao ZZ, Jiang ZH. Quantification of two polyacetylenes in Radix Ginseng and roots of related Panax species using a gas chromatography-mass spectrometric method. J Agric Food Chem 2007;55:8830-8835. https://doi.org/10.1021/jf070735o
  87. Chan P, Thomas GN, Tomlinson B. Protective effects of trilinolein extracted from Panax notoginseng against cardiovascular disease. Acta Pharmacol Sin 2002;23:1157-1162.
  88. Kobashi K, Akao T. Relation of intestinal bacteria to pharmacological effects of glycosides. Bioscience Microfl ora 1997;16:1-7.
  89. Kim DH. Herbal medicines are activated by intestinal microfl ora. Nat Prod Sci 2002;8:35-43.
  90. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  91. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-$Rb_1$ and -Rb2 in the digestive tract of rats. Chem Pharm Bull (Tokyo) 1991;39:2357-2361. https://doi.org/10.1248/cpb.39.2357
  92. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int 2005;25:1069-1073. https://doi.org/10.1111/j.1478-3231.2005.01068.x
  93. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-1160. https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  94. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration: measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-249. https://doi.org/10.1248/bpb.21.245
  95. Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, Xu F, Niu W, Wang F, Mao Y et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 2009;37:2290-2298. https://doi.org/10.1124/dmd.109.029819
  96. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 2001;16 Suppl:S28-S37.
  97. Shin JE, Park EK, Kim EJ, Hong YH, Lee KT, Kim DH. Cytotoxicity of compound K (IH-901) and ginsenoside $Rh_2$, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. J Ginseng Res 2003;27:129-134. https://doi.org/10.5142/JGR.2003.27.3.129
  98. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alphapromoted metastasis by suppressing nuclear factorkappaB signaling in murine colon cancer cells. Oncol Rep 2008;19:595-600.
  99. Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N. Inhibitory effects of ginsenoside $Rh_2$ on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res 1998;89:733-740. https://doi.org/10.1111/j.1349-7006.1998.tb03278.x
  100. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside $Rb_1$ and $Rb_2$ from human intestinal bacteria. Biol Pharm Bull 2000;23:1481-1485. https://doi.org/10.1248/bpb.23.1481
  101. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside $Rh_2$ by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 2004;27:61-67. https://doi.org/10.1007/BF02980048
  102. Lee SJ, Sung JH, Lee SJ, Moon CK, Lee BH. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett 1999;144:39-43. https://doi.org/10.1016/S0304-3835(99)00188-3
  103. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside $Rb_1$ and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 2005;28:652-656. https://doi.org/10.1248/bpb.28.652
  104. Shin YW, Kim DH. Antipruritic effect of ginsenoside rb1 and compound k in scratching behavior mouse models. J Pharmacol Sci 2005;99:83-88. https://doi.org/10.1254/jphs.FP0050260
  105. Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med 2003;69:518-522. https://doi.org/10.1055/s-2003-40653
  106. Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with benefi cial metabolic effects in db/db mice. J Agric Food Chem 2007;55:10641-10648. https://doi.org/10.1021/jf0722598
  107. Kim DH, Jung JS, Moon YS, Sung JH, Suh HW, Kim YH, Song DK. Inhibition of intracerebroventricular injection stress-induced plasma corticosterone levels by intracerebroventricularly administered compound K, a ginseng saponin metabolite, in mice. Biol Pharm Bull 2003;26:1035-1038. https://doi.org/10.1248/bpb.26.1035
  108. Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim DH. Ginsenosides $Rg_3$ and $Rh_2$ inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med 2006;72:627-633. https://doi.org/10.1055/s-2006-931563
  109. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside $Rh_2$. Biol Pharm Bull 2003;26:1581-1584. https://doi.org/10.1248/bpb.26.1581
  110. Lee HU, Bae EA, Han MJ, Kim DH. Hepatoprotective effect of 20(S)-ginsenosides $Rg_3$ and its metabolite 20(S)-ginsenoside $Rh_2$ on tert-butyl hydroperoxide-induced liver injury. Biol Pharm Bull 2005;28:1992-1994. https://doi.org/10.1248/bpb.28.1992
  111. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol 2007;17:1127-1133.
  112. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside $Rh_{2}$ are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-1008. https://doi.org/10.1016/j.bbrc.2007.10.125
  113. Lee WK, Kao ST, Liu IM, Cheng JT. Increase of insulin secretion by ginsenoside $Rh_{2}$ to lower plasma glucose in Wistar rats. Clin Exp Pharmacol Physiol 2006;33:27-32. https://doi.org/10.1111/j.1440-1681.2006.04319.x
  114. Park EK, Choo MK, Oh JK, Ryu JH, Kim DH. Ginsenoside $Rh_2$ reduces ischemic brain injury in rats. Biol Pharm Bull 2004;27:433-436. https://doi.org/10.1248/bpb.27.433
  115. Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, Kim DH, Hyun JW, Shin CY, Kim HS. Anti-infl ammatory mechanism of ginsenoside $Rh_{1}$ in lipopolysaccharidestimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 2010;115:1668-1680. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  116. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside $Rh_1$ possesses antiallergic and anti-infl ammatory activities. Int Arch Allergy Immunol 2004;133:113-120. https://doi.org/10.1159/000076383
  117. Lee Y, Jin Y, Lim W, Ji S, Choi S, Jang S, Lee S. A ginsenoside-$Rh_{1}$, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol Biol 2003;84:463-468. https://doi.org/10.1016/S0960-0760(03)00067-0
  118. Masuno H, Kitao T, Okuda H. Ginsenosides increase secretion of lipoprotein lipase by 3T3-L1 adipocytes. Biosci Biotechnol Biochem 1996;60:1962-1965. https://doi.org/10.1271/bbb.60.1962
  119. Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RN. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol 2009;156:626-637. https://doi.org/10.1111/j.1476-5381.2008.00066.x
  120. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microfl ora and its estrogenic effect. Biol Pharm Bull 2005;28:1903-1908. https://doi.org/10.1248/bpb.28.1903
  121. Han KL, Jung MH, Sohn JH, Hwang JK. Ginsenoside 20S-protopanaxatriol (PPT) activates peroxisome proliferator- activated receptor gamma (PPARgamma) in 3T3-L1 adipocytes. Biol Pharm Bull 2006;29:110-113. https://doi.org/10.1248/bpb.29.110
  122. Usami Y, Liu YN, Lin AS, Shibano M, Akiyama T, Itokawa H, Morris-Natschke SL, Bastow K, Kasai R, Lee KH. Antitumor agents. 261. 20(S)-protopanaxadiol and 20(s)-protopanaxatriol as antiangiogenic agents and total assignment of (1)H NMR spectra. J Nat Prod 2008;71:478-481. https://doi.org/10.1021/np070613q
  123. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, Pang P, Shan JJ. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium). J Pharm Pharmacol 2001;53:1515-1523. https://doi.org/10.1211/0022357011777882
  124. Hu S, Concha C, Cooray R, Holmberg O. Ginsengenhanced oxidative and phagocytic activities of polymorphonuclear leucocytes from bovine peripheral blood and stripping milk. Vet Res 1995;26:155-161.
  125. Kim JY, Germolec DR, Luster MI. Panax ginseng as a potential immunomodulator: studies in mice. Immunopharmacol Immunotoxicol 1990;12:257-276. https://doi.org/10.3109/08923979009019672
  126. Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138:169-178. https://doi.org/10.1016/j.imlet.2011.04.005
  127. Shin HJ, Kim YS, Kwak YS, Song YB, Kim YS, Park JD. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med 2004;70:1033-1038. https://doi.org/10.1055/s-2004-832643
  128. Baek SH, Lee JG, Park SY, Bae ON, Kim DH, Park JH. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 2010;11:2044-2052. https://doi.org/10.1021/bm100397p
  129. Metabolism of ginsenosides to bioactive compounds by intestinal microfl ora and its industrial application. J Ginseng Res 2009;33:165-176. https://doi.org/10.5142/JGR.2009.33.3.165
  130. Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19. https://doi.org/10.1007/s00253-010-2567-6
  131. Lee JH, Hyun YJ, Kim DH. Cloning and characterization of $\alpha$-L-arabinofuranosidase and bifunctional $\alpha$-L-arabinopyranosidase/$\beta$-D-galactopyranosidase from Bifidobacterium longum H-1. J Appl Microbiol 2011;111:1097-1107. https://doi.org/10.1111/j.1365-2672.2011.05128.x
  132. Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 2009;73:316-321. https://doi.org/10.1271/bbb.80525
  133. Kim BH, Lee SY, Cho HJ, You SN, Kim YJ, Park YM, Lee JK, Baik MY, Park CS, Ahn SC. Biotransformation of Korean Panax ginseng by pectinex. Biol Pharm Bull 2006;29:2472-2478. https://doi.org/10.1248/bpb.29.2472
  134. Park EK, Choo MK, Oh JK, Ryu JH, Kim DH. Ginsenoside $Rh_{2}$ reduces ischemic brain injury in rats. Biol Pharm Bull 2004;27:433-436. https://doi.org/10.1248/bpb.27.433
  135. Chang KH, Jee HS, Lee NK, Park SH, Lee NW, Paik HD. Optimization of the enzymatic production of 20(S)-ginsenoside Rg(3) from white ginseng extract using response surface methodology. N Biotechnol 2009;26:181-186. https://doi.org/10.1016/j.nbt.2009.08.011
  136. Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH. Purification and characterization of ginsenoside Ra-hydrolyzing beta-D-xylosidase from Bifi dobacterium breve K-110, a human intestinal anaerobic bacterium. Biol Pharm Bull 2003;26:1170-1173. https://doi.org/10.1248/bpb.26.1170
  137. Yu H, Liu H, Zhang C, Tan D, Lu M, Jin F. Purifi cation and characterization of gypenoside-alpha-L-rhamnosidase hydrolyzing gypenoside-5 into ginsenoside Rd. Process Biochem 2004;39:861-867. https://doi.org/10.1016/S0032-9592(03)00196-1
  138. Shin HY, Park SY, Sung JH, Kim DH. Purifi cation and characterization of alpha-L-arabinopyranosidase and alpha-L-arabinofuranosidase from Bifi dobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside $Rb_2$ and Rc. Appl Environ Microbiol 2003;69:7116-7123. https://doi.org/10.1128/AEM.69.12.7116-7123.2003
  139. Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, Kang HC, Koo BS. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J Microbiol Biotechnol 2007;17:905-912.
  140. Zhao X, Gao L, Wang J, Bi H, Gao J, Du X, Zhou Y, Tai G. A novel ginsenoside Rb1-hydrolyzing beta-D-glucosidase from Cladosprium fulvum. Process Biochem 2009; 44:612-618. https://doi.org/10.1016/j.procbio.2009.01.016
  141. Son JW, Kim HJ, Oh DK. Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 2008;30:713-716. https://doi.org/10.1007/s10529-007-9590-4
  142. Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG. Marked production of ginsenosides Rd, F2, $Rg_3$, and compound K by enzymatic method. Chem Pharm Bull (Tokyo) 2007;55:1522-1527. https://doi.org/10.1248/cpb.55.1522
  143. Ko SR, Choi KJ, Suzuki K, Suzuki Y. Enzymatic preparation of ginsenosides $Rg_2$, $Rh_1$, and F1. Chem Pharm Bull (Tokyo) 2003;51:404-408. https://doi.org/10.1248/cpb.51.404
  144. Yan Q, Zhou W, Li X, Feng M, Zhou P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing beta-glucosidase from Paecilomyces bainier sp. 229. Biosci Biotechnol Biochem 2008;72:352-359. https://doi.org/10.1271/bbb.70425
  145. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside $Rb_1$ to CK, from Paecilomyces bainier. J Microbiol Biotechnol 2008;18:1081-1089.
  146. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside $Rb_1$-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 2001;65:1163-1169. https://doi.org/10.1271/bbb.65.1163
  147. Yu H, Zhang C, Lu M, Sun F, Fu Y, Jin F. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull (Tokyo) 2007;55:231-235. https://doi.org/10.1248/cpb.55.231
  148. Su JH, Xu JH, Lu WY, Lin GQ. Enzymatic transformation of ginsenoside $Rg_3$ to $Rh_2$ using newly isolated Fusarium proliferatum ECU 2042. J Mol Catal B Enzym 2006;38:113-118. https://doi.org/10.1016/j.molcatb.2005.12.004
  149. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 2002;25:743-747. https://doi.org/10.1248/bpb.25.743
  150. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microfl ora and its estrogenic effect. Biol Pharm Bull 2005;28:1903-1908. https://doi.org/10.1248/bpb.28.1903
  151. Yu H, Gong J, Zhang C, Jin F. Purification and characterization of ginsenoside-alpha-L-rhamnosidase. Chem Pharm Bull (Tokyo) 2002;50:175-178. https://doi.org/10.1248/cpb.50.175
  152. Ruan CC, Zhang H, Zhang LX, Liu Z, Sun GZ, Lei J, Qin YX, Zheng YN, Li X, Pan HY. Biotransformation of ginsenoside Rf to $Rh_{1}$ by recombinant beta-glucosidase. Molecules 2009;14:2043-2048. https://doi.org/10.3390/molecules14062043

Cited by

  1. Identification of active ingredients in Wuzhuyu decoction improving migraine in mice by spectral efficiency association vol.12, pp.1, 2012, https://doi.org/10.3892/mmr.2015.3506
  2. Apoptosis-Inducing Effect of Ginsenoside Rg6 on Human Lymphocytoma JK Cells vol.18, pp.7, 2013, https://doi.org/10.3390/molecules18078109
  3. β-Glycosidase-assisted bioconversion of ginsenosides in purified crude saponin and extracts from red ginseng (Panax ginseng C. A. Meyer) vol.22, pp.6, 2013, https://doi.org/10.1007/s10068-013-0260-0
  4. Antioxidative properties of traditional herbal medicines and the application of comet assay on antioxidative study vol.3, pp.3, 2013, https://doi.org/10.5667/tang.2013.0016
  5. Comparative Analysis of the Gut Microbiota in People with Different Levels of Ginsenoside Rb1 Degradation to Compound K vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0062409
  6. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75) vol.12, pp.1, 2014, https://doi.org/10.1186/s12967-014-0283-1
  7. Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor vol.36, pp.3, 2014, https://doi.org/10.1007/s11738-013-1439-y
  8. vol.62, pp.36, 2014, https://doi.org/10.1021/jf502214x
  9. Characterization of a Ginsenoside-Transforming β-glucosidase from Paenibacillus mucilaginosus and Its Application for Enhanced Production of Minor Ginsenoside F2 vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085727
  10. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review vol.10, pp.1, 2015, https://doi.org/10.1007/s11481-014-9569-6
  11. on Thermoregulation in Animal Models vol.2015, pp.1741-4288, 2015, https://doi.org/10.1155/2015/748041
  12. Dammarane triterpenoids for pharmaceutical use: a patent review (2005 – 2014) vol.25, pp.7, 2015, https://doi.org/10.1517/13543776.2015.1038239
  13. Effects of a Juice Diet Including a Lipid Improvement Program and Program Attendance on the Korean Serum Lipid Profile vol.26, pp.2, 2015, https://doi.org/10.7856/kjcls.2015.26.2.261
  14. Anti-stress Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol in Immobilized Mice vol.38, pp.2, 2015, https://doi.org/10.1248/bpb.b14-00669
  15. Anti-fatigue Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol in Mice vol.38, pp.9, 2015, https://doi.org/10.1248/bpb.b15-00230
  16. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis vol.16, pp.6, 2016, https://doi.org/10.1007/s10142-016-0517-9
  17. 复方西洋参和红枣制剂对小鼠免疫功能影响的研究 vol.17, pp.2, 2016, https://doi.org/10.1631/jzus.B1500170
  18. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders vol.2016, pp.1741-4288, 2016, https://doi.org/10.1155/2016/2614742
  19. Prototypes of Panaxadiol and Panaxatriol Saponins Suppress LPS-mediated iNOS/NO Production in RAW264.7 Murine Macrophage Cells vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1422
  20. Ginseng for Liver Injury: Friend or Foe? vol.3, pp.4, 2016, https://doi.org/10.3390/medicines3040033
  21. herbs vol.37, pp.13, 2016, https://doi.org/10.1002/elps.201600027
  22. /HRMS vol.40, pp.11, 2016, https://doi.org/10.1039/C6NJ01702A
  23. vol.48, pp.5, 2017, https://doi.org/10.1111/are.13072
  24. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells vol.53, pp.3, 2016, https://doi.org/10.1007/s12035-015-9131-4
  25. Compound K derived from ginseng: neuroprotection and cognitive improvement vol.7, pp.11, 2016, https://doi.org/10.1039/C6FO01077F
  26. Enzymatic transglycosylation of ginsenoside Rg1 by rice seed α-glucosidase vol.80, pp.2, 2016, https://doi.org/10.1080/09168451.2015.1083398
  27. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations vol.101, pp.10, 2017, https://doi.org/10.1007/s00253-017-8279-4
  28. Surface-Active Properties of Solvent-Extracted Panax ginseng Saponin-Based Surfactants vol.20, pp.3, 2017, https://doi.org/10.1007/s11743-017-1940-1
  29. An AP2/ERF Family Transcription Factor PnERF1 Raised the Biosynthesis of Saponins in Panax notoginseng vol.36, pp.3, 2017, https://doi.org/10.1007/s00344-017-9672-z
  30. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice vol.42, pp.11, 2017, https://doi.org/10.1007/s11064-017-2349-y
  31. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00702
  32. Uncovering Active Constituents Responsible for Different Activities of Raw and Steamed Panax notoginseng Roots vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00745
  33. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity vol.8, pp.1664-3224, 2017, https://doi.org/10.3389/fimmu.2017.01542
  34. pp.08854513, 2017, https://doi.org/10.1002/bab.1580
  35. Increased antioxidative and nitric oxide scavenging activity of ginseng marc fermented by Pediococcus acidilactici KCCM11614P pp.2092-6456, 2018, https://doi.org/10.1007/s10068-017-0207-y
  36. Ginsenoside Rb1 Eliminates HIV-1 (D3)-Transduced Cytoprotective Human Macrophages by Inhibiting the AKT Pathway vol.17, pp.8, 2014, https://doi.org/10.1089/jmf.2013.3020
  37. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122147
  38. Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a double-blind, randomized, cross-over clinical trial pp.1436-6215, 2018, https://doi.org/10.1007/s00394-018-1642-0
  39. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02785
  40. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34210-3
  41. : Phytochemistry and Pharmacological Diversity and Structure-Activity Relationship on Anticancer Effects vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/9186926
  42. Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071773
  43. and their improved bioactivities vol.34, pp.7, 2018, https://doi.org/10.1080/87559129.2018.1424183
  44. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders vol.122, pp.6, 2018, https://doi.org/10.1111/bcpt.12972
  45. Fermented Red Ginseng Alleviates Cyclophosphamide-Induced Immunosuppression and 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Regulating Macrophage Activation and T Cell Differentiation vol.46, pp.08, 2018, https://doi.org/10.1142/S0192415X18500945
  46. and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2019, https://doi.org/10.1080/13543776.2019.1556258
  47. Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110 vol.22, pp.4, 2012, https://doi.org/10.4014/jmb.1110.10001
  48. Ginsenoside Re Ameliorates Inflammation by Inhibiting the Binding of Lipopolysaccharide to TLR4 on Macrophages vol.60, pp.38, 2012, https://doi.org/10.1021/jf301372g
  49. The Effect of Red Ginseng Extract on Inflammatory Cytokines after Chemotherapy in Children vol.36, pp.4, 2012, https://doi.org/10.5142/jgr.2012.36.4.383
  50. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial vol.11, pp.None, 2012, https://doi.org/10.1186/1475-2891-11-47
  51. Ginsenoside Rh1 Ameliorates High Fat Diet-Induced Obesity in Mice by Inhibiting Adipocyte Differentiation vol.36, pp.1, 2013, https://doi.org/10.1248/bpb.b12-00558
  52. Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.124
  53. Actoprotective effect of ginseng: improving mental and physical performance vol.37, pp.2, 2012, https://doi.org/10.5142/jgr.2013.37.144
  54. Ginsenoside Rh1 Eliminates the Cytoprotective Phenotype of Human Immunodeficiency Virus Type 1-Transduced Human Macrophages by Inhibiting the Phosphorylation of Pyruvate Dehydrogenase Lipoamide Kinase vol.36, pp.7, 2012, https://doi.org/10.1248/bpb.b13-00013
  55. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach vol.37, pp.3, 2012, https://doi.org/10.5142/jgr.2013.37.283
  56. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.293
  57. 20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages vol.37, pp.3, 2012, https://doi.org/10.5142/jgr.2013.37.300
  58. A new validated analytical method for the quality control of red ginseng products vol.37, pp.4, 2012, https://doi.org/10.5142/jgr.2013.37.475
  59. A new epimer of ocotillol from stems and leaves of American ginseng vol.28, pp.13, 2012, https://doi.org/10.1080/14786419.2014.896008
  60. Inhibitory effects of ginseng seed on melanin biosynthesis vol.10, pp.38, 2012, https://doi.org/10.4103/0973-1296.133271
  61. Antitumor effects of dammarane-type saponins from steamed Notoginseng vol.10, pp.39, 2012, https://doi.org/10.4103/0973-1296.137372
  62. Self-microemulsifying Drug Delivery System Improved Oral Bioavailability of 20(S)-Protopanaxadiol: From Preparation to Evaluation vol.63, pp.9, 2012, https://doi.org/10.1248/cpb.c15-00247
  63. Reducing drug–herb interaction risk with a computerized reminder system vol.11, pp.None, 2012, https://doi.org/10.2147/tcrm.s78124
  64. Lactobacillus pentosus var. plantarum C29 increases the protective effect of soybean against scopolamine-induced memory impairment in mice vol.66, pp.8, 2012, https://doi.org/10.3109/09637486.2015.1064865
  65. Ocotillol, a Majonoside R2 Metabolite, Ameliorates 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Restoring the Balance of Th17/Treg Cells vol.63, pp.31, 2015, https://doi.org/10.1021/acs.jafc.5b02183
  66. Herbal medicine use among patients with chronic diseases vol.4, pp.3, 2012, https://doi.org/10.5455/jice.20150623090040
  67. Fermentative Transformation of Ginsenoside Rb1 from Panax ginseng C. A. Meyer to Rg3 and Rh2 by Lactobacillus paracasei subsp. tolerans MJM60396 vol.21, pp.5, 2012, https://doi.org/10.1007/s12257-016-0281-7
  68. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating Lp-PLA2 activity and lysophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subject vol.39, pp.6, 2012, https://doi.org/10.1038/hr.2016.7
  69. Synthesis of Ocotillol-Type Ginsenosides vol.81, pp.21, 2016, https://doi.org/10.1021/acs.joc.6b01265
  70. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging vol.8, pp.6, 2017, https://doi.org/10.14336/ad.2017.0707
  71. Nototronesides A-C, Three Triterpene Saponins with a 6/6/9 Fused Tricyclic Tetranordammarane Carbon Skeleton from the Leaves of Panax notoginseng vol.20, pp.15, 2012, https://doi.org/10.1021/acs.orglett.8b01848
  72. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer vol.15, pp.6, 2012, https://doi.org/10.3892/ol.2018.8414
  73. Insight into the Hydrolytic Selectivity of β -Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants vol.2018, pp.None, 2012, https://doi.org/10.1155/2018/4360252
  74. Synthesis of Δ20-Ginsenosides Rh4, (20E)-Rh3, Rg6, and Rk1: A General Approach To Access Dehydrated Ginsenosides vol.83, pp.5, 2012, https://doi.org/10.1021/acs.joc.7b02987
  75. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study vol.9, pp.71, 2018, https://doi.org/10.18632/oncotarget.26035
  76. Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products vol.24, pp.4, 2012, https://doi.org/10.20307/nps.2018.24.4.229
  77. 20( S )-Protopanaxadiol Inhibits Angiotensin II-Induced Epithelial- Mesenchymal Transition by Downregulating SIRT1 vol.10, pp.None, 2012, https://doi.org/10.3389/fphar.2019.00475
  78. Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity’s Involvement and Herbal Treatment vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/2037484
  79. Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/9402781
  80. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties vol.11, pp.5, 2012, https://doi.org/10.3390/nu11051041
  81. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy vol.14, pp.6, 2019, https://doi.org/10.1177/1934578x19858223
  82. Analysis of Ginsenoside Content (Panax ginseng) from Different Regions vol.24, pp.19, 2012, https://doi.org/10.3390/molecules24193491
  83. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency vol.5, pp.None, 2012, https://doi.org/10.1038/s41421-018-0075-5
  84. Pharmacological Investigation of “Meridian Tropism” in Three “Shen” Chinese Herbs vol.10, pp.4, 2012, https://doi.org/10.4236/cm.2019.104007
  85. Natural Product Ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in Cancer Treatment: A Review of the Pharmacological Mechanisms and Pharmacokinetics vol.11, pp.None, 2012, https://doi.org/10.3389/fphar.2020.00521
  86. A Combination of Korean Red Ginseng Extract and Glycyrrhiza glabra L. Extract Enhances Their Individual Anti-Obesity Properties in 3T3-L1 Adipocytes and C57BL/6J Obese Mice vol.23, pp.3, 2020, https://doi.org/10.1089/jmf.2019.4660
  87. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages vol.15, pp.1, 2012, https://doi.org/10.2174/1574884714666190704115345
  88. Effects of Red and Fermented Ginseng and Ginsenosides on Allergic Disorders vol.10, pp.4, 2012, https://doi.org/10.3390/biom10040634
  89. Bifidobacteria-Fermented Red Ginseng and Its Constituents Ginsenoside Rd and Protopanaxatriol Alleviate Anxiety/Depression in Mice by the Amelioration of Gut Dysbiosis vol.12, pp.4, 2020, https://doi.org/10.3390/nu12040901
  90. Effects of different polyaniline emeraldine compositions in electrodepositing ginsenoside encapsulated poly(lactic‐co‐glycolic acid) microcapsules coating: Physicochemical characterization vol.108, pp.5, 2020, https://doi.org/10.1002/jbm.a.36891
  91. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology vol.117, pp.6, 2012, https://doi.org/10.1002/bit.27325
  92. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2012, https://doi.org/10.3390/molecules25112635
  93. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study vol.12, pp.6, 2012, https://doi.org/10.3390/nu12061582
  94. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities vol.10, pp.7, 2012, https://doi.org/10.3390/biom10071028
  95. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis vol.52, pp.None, 2012, https://doi.org/10.1016/j.ctim.2020.102457
  96. 20S-Protopanaxatriol Ameliorates Hepatic Fibrosis, Potentially Involving FXR-Mediated Inflammatory Signaling Cascades vol.68, pp.31, 2012, https://doi.org/10.1021/acs.jafc.0c01978
  97. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng vol.12, pp.9, 2012, https://doi.org/10.3390/nu12092590
  98. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  99. Lactobacillus fermentum KP-3-fermented ginseng ameliorates alcohol-induced liver disease in C57BL/6N mice through the AMPK and MAPK pathways vol.11, pp.11, 2012, https://doi.org/10.1039/d0fo02396e
  100. The Impact of Gut Microbiome on the Pharmacokinetics of Ginsenosides Rd and Rg3 in Mice after Oral Administration of Red Ginseng vol.49, pp.8, 2021, https://doi.org/10.1142/s0192415x21500890
  101. Rapid Determination of 21 Chinese Domestically Registered Pesticides in Ginseng Using Cleanup Based on Zirconium-Oxide-Modified Silica and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spect vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5516563
  102. Effects of Ginsenoside Rg3 on Inhibiting Differentiation, Adipogenesis, and ER Stress-Mediated Cell Death in Brown Adipocytes vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/6668665
  103. Solid-State Fermentation With Aspergillus cristatus Enhances the Protopanaxadiol- and Protopanaxatriol-Associated Skin Anti-aging Activity of Panax notoginseng vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.602135
  104. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer vol.12, pp.None, 2012, https://doi.org/10.3389/fphar.2021.738914
  105. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers vol.30, pp.None, 2021, https://doi.org/10.1016/j.cjche.2020.11.012
  106. A Synergistic Anti-Diabetic Effect by Ginsenosides Rb1 and Rg3 through Adipogenic and Insulin Signaling Pathways in 3T3-L1 Cells vol.11, pp.4, 2021, https://doi.org/10.3390/app11041725
  107. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  108. Differentiation-promoting and Protective Effects of the Fractions of Various Ginseng Species in C2C12 Cells vol.29, pp.2, 2012, https://doi.org/10.7783/kjmcs.2021.29.2.135
  109. Inhibition of angiotensin II-induced hypertrophy and cardiac dysfunction by North American ginseng (Panax quinquefolius) vol.99, pp.5, 2012, https://doi.org/10.1139/cjpp-2020-0480
  110. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2012, https://doi.org/10.1021/acs.jafc.1c01231
  111. Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164820
  112. Comprehensive phytochemical profiling of American ginseng in Jilin province of China based on ultrahigh‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry vol.56, pp.11, 2012, https://doi.org/10.1002/jms.4787
  113. Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review vol.27, pp.11, 2012, https://doi.org/10.1089/acm.2021.0135
  114. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review vol.2, pp.None, 2021, https://doi.org/10.1016/j.carpta.2021.100044
  115. Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng vol.9, pp.12, 2012, https://doi.org/10.3390/pr9122271