• 제목/요약/키워드: ginsenoside Rd2

검색결과 252건 처리시간 0.025초

인삼 사포닌의 High Performance Liquid Chromatography에 의한 분리 (High Performance Liquid Chromatographic Determination of Ginseng Saponins)

  • 홍순근;박은규;이춘영;김명운
    • 약학회지
    • /
    • 제23권3_4호
    • /
    • pp.181-186
    • /
    • 1979
  • A high performance liquid chromatograpic procedure is described for determining ginseng saponins such as ginsenoside-Rb1, -Rb2, -Rc, -Rd, -Re, -Rf, -Rg1, and-Rg2. Ginseng saponins extracted with 90% methanol and water-saturated butanol were compared with pure standard ginsenosides. The resolution of the saponins was satisfactory and detection limit for each saponin was about 5.mu.g. Separation of the saponins was accomplished using a .mu. Bondapak carbohydrate analysis column, mobile phase of acetonitrile-water-butanol (80:20:15) and differential refractive index (RI) detector. The reproducibility and the recovery were also studied. This method was applied for determining the saponin contents of several parts of leaf, fresh ginseng, white ginseng, and red ginseng.

  • PDF

Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases

  • Kim, Ji Hye;Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.435-443
    • /
    • 2017
  • Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives-including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1-exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-${\kappa}B$ and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.

Differential Transformation of Ginsenosides from Panax ginseng by Lactic Acid Bacteria

  • Chi, Hyun;Lee, Bo-Hyun;You, Hyun-Ju;Park, Myung-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1629-1633
    • /
    • 2006
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. The transformation of ginsenosides with live lactic acid bacteria transformed ginsenosides Rb2 and Rc into Rd, but the reactions were slow. When the crude enzymes obtained from several lactic acid bacteria were used for transformation, those from Bifidobacterium sp. Int57 exhibited the most potent transforming activity of ginsenosides to compound K. In comparison, a relatively higher level of Rh2 was produced by the enzymes from Lactobacillus delbrueckii and Leuconostoc mesenteroides. These results suggest that it is feasible to develop a specific bioconversion process to obtain specific ginsenosides using the appropriate combination of ginsenoside substrates and specific microbial enzymes.

인삼(人蔘)의 근(根), 엽(葉) 및 경(莖)의 사포닌 추출과정중(抽出過程中) 지용성(脂溶性) 용매류(溶媒類)의 정제효과(精製效果) (Purifying Effects of Fat-soluble Solvents in Extracting Saponins from Ginseng Root, Leaf and Stem)

  • 김석창;최강주;고성룡;주현규
    • Applied Biological Chemistry
    • /
    • 제30권4호
    • /
    • pp.335-339
    • /
    • 1987
  • 인삼(人蔘)의 근(根) 엽(葉) 및 경(莖)에서 사포닌 추출과정중(抽出過程中) 지용성(脂溶性) 용매류(溶媒類)에 따른 콜로르필 및 색소류(色素類) 등 가시부(加視部) 흡수물질(吸收物質)의 정제효과와 사포닌의 수율(收率)에 미치는 영향을 조사(調査)하였다. 근(根)사포닌의 정제(精製)는 여러 지용성(脂溶性) 용매류(溶媒類)가 효과적이었고, 엽(葉)과 경(莖)사포닌의 정제(精製)는 chloroform과 benzene이 효과적이었다. 또한 지상부(地上部)사포닌의 경우는 ethyl acetate, ethyl ether, chloroform 및 benzene으로 1회씩 순차적(順次的)으로 정제(精製)할 경우가 단일용매만으로 4회 추출하는 편보다는 효과적이었으며 지용성(脂溶性) 용매류(溶媒類)에 따른 사포닌 수율(收率)은 거의 차이가 없었다. 한편 조사포닌 분획물 및 ginsenoside 함량을 볼때 엽(葉)에 있어서는 $18.5{\sim}19.5%$$10.8{\sim}11.4%$로서 근(根)의 $4.6{\sim}5.1%$$2.0{\sim}2.6%$나 경(莖)의 $2.2{\sim}2.5%$$0.63{\sim}0.67%$에 비하여 현저하게 높았다 따라서 인삼엽(人蔘葉)은 사포닌 화합물(化合物)이나 $ginsenoside-Rg_1,\;-Re,\;-Rd,\;-Rc,\;-Rb_2,\;-Rf$ 등의 분리용(分離用) 원료(原料)로 매우 적합하였다.

  • PDF

Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography

  • Park, Hee-Won;In, Gyo;Han, Sung-Tai;Lee, Myoung-Woo;Kim, So-Young;Kim, Kyung-Tack;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.457-467
    • /
    • 2013
  • A quick and simple method for simultaneous determination of the 30 ginsenosides (ginsenoside Ro, Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, 20(S)-Rh1, 20(S)-Rh2, 20(R)-Rh2, F1, F2, F4, Ra1, Rg6, Rh4, Rk3, Rg5, Rk1, Rb3, Rk2, Rh3, compound Y, compound K, and notoginsenoside R1) in Panax ginseng preparations was developed and validated by an ultra performance liquid chromatography photo diode array detector. The separation of the 30 ginsenosides was efficiently undertaken on the Acquity BEH C-18 column with gradient elution with phosphoric acids. Especially the chromatogram of the ginsenoside Ro was dramatically enhanced by adding phosphoric acid. Under optimized conditions, the detection limits were 0.4 to 1.7 mg/L and the calibration curves of the peak areas for the 30 ginsenosides were linear over three orders of magnitude with a correlation coefficients greater than 0.999. The accuracy of the method was tested by a recovery measurement of the spiked samples which yielded good results of 89% to 118%. From these overall results, the proposed method may be helpful in the development and quality of P. ginseng preparations because of its wide range of applications due to the simultaneous analysis of many kinds of ginsenosides.

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • 제21권2호
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

한국산 및 외국산 홍삼의 사포닌 및 무기물 성분 비교 (Comparison of the Content of Saponin and Mineral Component in Korean Red Ginseng and Other Red Ginseng)

  • 이종원;이성계;도재호
    • Journal of Ginseng Research
    • /
    • 제26권4호
    • /
    • pp.196-201
    • /
    • 2002
  • 본 연구는 각국 홍삼의 성분비교 연구로서 한국홍삼(찬삼, 지삼, 양삼), 북한홍삼(천삼, 지삼, 양삼), 중국석주홍삼(1등, 2등, 3등), 중국길림홍삼(1등, 2등, 3등), 일본운주홍삼(1등, 2등, 3등) 및 일본신주홍삼(1등, 2등, 3등) 등을 대상으로 사포닌 및 무기물 함량에 대해서 비교 분석한 결과는 다음과 같다. 조사포닌 함량은 한국홍삼의 경우 3.05~3.76%, 북한홍삼은 2.09~3.21% 중국석주홍삼은 2.82~3.71%, 중국길림홍삼은 2.72~3.62%, 일본주홍삼은 2.11~2.44% 그리고 일본신주홍삼은 2.18~2.87%로 전반적으로 한국홍삼이 높게 나타났다. Ginsenoside중에 Rb1, Bb2, Rc, Rd, Re, Rg$_{1}$ 함량을 분석한 결과, 한국홍삼의 경우 약 1.43%로 북한홍삼 1.14%, 중국석주 1.13%, 중국길림 1.07%, 일본운주 0.95%, 일본신주 1.10% 보다 한국홍삼이 약 0.52~0.33% 더 많이 함유하고 있다. 특히 ginsenoside 중에서 Rb$_{1}$, Re, Rg$_{1}$ 성분이 대체적으로 한국홍삼에 많이 함유하고 있었으며, 그 외 성분은 비슷한 경향으로 나타났다. 26종의 무기물함량을 한국홍삼과 타국홍삼과 비교 조사한 결과, 차이는 큰 원소는 As, Ce, Sb, Sm, Sr, K, La, Na 등이었으며, 특히 La성분이 한국홍삼은 0.64~0.88% ppm, 북한홍삼은 0.43~0.67 ppmdldjTdmsk 중국홍삼(석주삼, 길림삼)은 0.09~0.21 ppm 정도이고, 일본홍삼은 0.04~0.14 ppm이었다. 그리고 Na함량에 있어서 한국홍삼은 286~350 ppm인데 비해서 중국홍삼은 59~180 ppm으로 상당히 낮았으며, Sn함량도 한국홍삼은 10.00~72.65 ppm이었으나 중국홍삼은 3.75~9.71 ppm이었다. Brgkafid에 있어서는 일본홍삼이 2.10~3.56 ppm으로 나타났으나 한국홍삼은 0.89~2.77 ppm, 중국홍삼은 0.42~1.04 ppm이었고 Ce함량은 일본홍삼이 가장 낮았다.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition

  • Lee, Sang Myung;Bae, Bong-Seok;Park, Hee-Weon;Ahn, Nam-Geun;Cho, Byung-Gu;Cho, Yong-Lae;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.384-391
    • /
    • 2015
  • It has been reported that Korean Red Ginseng has been manufactured for 1,123 y as described in the GoRyeoDoGyeong record. The Korean Red Ginseng manufactured by the traditional preparation method has its own chemical component characteristics. The ginsenoside content of the red ginseng is shown as Rg1: 3.3 mg/g, Re: 2.0 mg/g, Rb1: 5.8 mg/g, Rc:1.7 mg/g, Rb2: 2.3 mg/g, and Rd: 0.4 mg/g, respectively. It is known that Korean ginseng generally consists of the main root and the lateral or fine roots at a ratio of about 75:25. Therefore, the red ginseng extract is prepared by using this same ratio of the main root and lateral or fine roots and processed by the historical traditional medicine prescription. The red ginseng extract is prepared through a water extraction ($90^{\circ}C$ for 14-16 h) and concentration process (until its final concentration is 70-73 Brix at $50-60^{\circ}C$). The ginsenoside contents of the red ginseng extract are shown as Rg1: 1.3 mg/g, Re: 1.3 mg/g, Rb1: 6.4 mg/g, Rc:2.5 mg/g, Rb2: 2.3 mg/g, and Rd: 0.9 mg/g, respectively. Arginine-fructose-glucose (AFG) is a specific amino-sugar that can be produced by chemical reaction of the process when the fresh ginseng is converted to red ginseng. The content of AFG is 1.0-1.5% in red ginseng. Acidic polysaccharide, which has been known as an immune activator, is at levels of 4.5-7.5% in red ginseng. Therefore, we recommended that the chemical profiles of Korean Red Ginseng made through the defined traditional method should be well preserved and it has had its own chemical characteristics since its traditional development.