DOI QR코드

DOI QR Code

Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases

  • Kim, Ji Hye (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Yi, Young-Su (Department of Pharmaceutical Engineering, Cheongju University) ;
  • Kim, Mi-Yeon (School of Systems Biomedical Science, Soongsil University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2016.07.12
  • Accepted : 2016.08.09
  • Published : 2017.10.15

Abstract

Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives-including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1-exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-${\kappa}B$ and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.

Keywords

References

  1. Abbas AK, Lichtman AH, Pillai S. Basic immunology: functions and disorders of the immune system. Elsevier Health Sciences; 2012.
  2. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449:819-26. https://doi.org/10.1038/nature06246
  3. Lodish H, Berk A, Zipursky S. Molecular cell biology. 4th ed. New York: W.H. Freeman; 2000.
  4. Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. New York: Garland; 2001.
  5. Medzhitov R, Janeway Jr CA. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10:351-3. https://doi.org/10.1006/smim.1998.0136
  6. Rus H, Cudrici C, Niculescu F. The role of the complement system in innate immunity. Immunol Res 2005;33:103-12. https://doi.org/10.1385/IR:33:2:103
  7. Janeway CA, Travers P, Walport M, Capra JD. Immunobiology: the immune system in health and disease. New York: Garland; 2005.
  8. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996;383:787-93. https://doi.org/10.1038/383787a0
  9. McHeyzer-Williams L, Malherbe L, McHeyzer-Williams M. Helper T cell-regulated B cell immunity. Curr Top Microbiol Immunol 2006;311:59-83.
  10. Hong BN, Ji MG, Kang TH. The efficacy of red ginseng in type 1 and type 2 diabetes in animals. Evidence Based Complement Alternat Med 2013;2013:593181.
  11. Helmes S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-75.
  12. Ernst E. Complementary/alternative medicine for hypertension: a mini-review. Wiener Med Wochenschr 2005;155:386-91. https://doi.org/10.1007/s10354-005-0205-1
  13. Jeong CS. Effect of butanol fraction of Panax ginseng head on gastric lesion and ulcer. Arch Pharm Res 2002;25:61-6. https://doi.org/10.1007/BF02975263
  14. Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003;68:1539-44.
  15. Yun TK. Brief introduction of Panax ginseng CA Meyer. J Korean Med Sci 2001;16:S3. https://doi.org/10.3346/jkms.2001.16.S.S3
  16. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  17. Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  18. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
  19. Chang-Xiao L, Pei-Gen X. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27-38. https://doi.org/10.1016/0378-8741(92)90057-X
  20. Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-$1{\beta}$ generation. Clin Exp Immunol 2007;147:227-35.
  21. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454:428-35. https://doi.org/10.1038/nature07201
  22. Lange C, Hemmrich G, Klostermeier UC, Lopez-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TC, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 2011;28:1687-702. https://doi.org/10.1093/molbev/msq349
  23. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 2008;3:e2119. https://doi.org/10.1371/journal.pone.0002119
  24. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 2005;102:9577-82. https://doi.org/10.1073/pnas.0502272102
  25. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009;27:229-65. https://doi.org/10.1146/annurev.immunol.021908.132715
  26. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. https://doi.org/10.1038/nature01322
  27. Gonzalez-Chavez A, Elizondo-Argueta S, Gutierrez-Reyes G, Leon-Pedroza JI. Pathophysiological implications between chronic inflammation and the development of diabetes and obesity. Cir Cir 2011;79:209-16.
  28. Tracy R. Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int J Obes Relat Metab Disord 2003;27.
  29. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006;12:1005-15.
  30. Rhule A, Navarro S, Smith JR, Shepherd DM. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol 2006;106:121-8. https://doi.org/10.1016/j.jep.2005.12.012
  31. Cho JY, Yoo ES, Baik KU, Park MH, Han BH. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known TNF-alpha antagonists. Planta Med 2001;67:213-8. https://doi.org/10.1055/s-2001-12005
  32. Joh E-H, Lee I-A, Jung I-H, Kim D-H. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-the key step of inflammation. Biochem Pharmacol 2011;82:278-86. https://doi.org/10.1016/j.bcp.2011.05.003
  33. Wood AJ, Eastell R. Treatment of postmenopausal osteoporosis. N Engl J Med 1998;338:736-46. https://doi.org/10.1056/NEJM199803123381107
  34. Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing 2005;2:1. https://doi.org/10.1186/1742-4933-2-1
  35. Spector T, Hall G, McCloskey E, Kanis J. Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 1993;306:558. https://doi.org/10.1136/bmj.306.6877.558
  36. Gough A, Emery P, Holder R, Lilley J, Eyre S. Generalised bone loss in patients with early rheumatoid arthritis. Lancet 1994;344:23-7. https://doi.org/10.1016/S0140-6736(94)91049-9
  37. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease: a population-based cohort study. Ann Intern Med 2000;133:795-9. https://doi.org/10.7326/0003-4819-133-10-200011210-00012
  38. Schoon EJ, Blok BM, Geerling BJ, Russel MG, Stockbrugger RW, Brummer RJM. Bone mineral density in patients with recently diagnosed inflammatory bowel disease. Gastroenterology 2000;119:1203-8. https://doi.org/10.1053/gast.2000.19280
  39. Bultink IE, Lems WF, Kostense PJ, Dijkmans BA, Voskuyl AE. Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 2005;52:2044-50. https://doi.org/10.1002/art.21110
  40. Mundy GR. Osteoporosis and inflammation. Nutr Rev 2007;65:S147-51. https://doi.org/10.1301/nr.2007.dec.S147-S151
  41. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol 2007;170:427-35. https://doi.org/10.2353/ajpath.2007.060834
  42. Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating $NF-{\kappa}B$ and MAPKs pathways. Food Chem Toxicol 2012;50:1610-5. https://doi.org/10.1016/j.fct.2012.02.019
  43. Cuong TT, Yang C-S, Yuk J-M, Lee H-M, Ko S-R, Cho B-G, Jo E-K. Glucocorticoid receptor agonist compound K regulates Dectin-1-dependent inflammatory signaling through inhibition of reactive oxygen species. Life Sci 2009;85:625-33. https://doi.org/10.1016/j.lfs.2009.08.014
  44. Park J-S, Shin JA, Jung J-S, Hyun J-W, Van Le TK, Kim D-H, Park E-M, Kim H-S. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035
  45. Park E-K, Shin Y-W, Lee H-U, Kim S-S, Lee Y-C, Lee B-Y, Kim D-H. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharmacol Bull 2005;28:652-6. https://doi.org/10.1248/bpb.28.652
  46. Lee J-Y, Shin J-W, Chun K-S, Park K-K, Chung W-Y, Bang Y-J, Sung J-H, Surh Y-J. Antitumor promotional effects of a novel intestinal bacterial metabolite (IH-901) derived from the protopanaxadiol-type ginsenosides in mouse skin. Carcinogenesis 2005;26:359-67.
  47. Li J, Zhong W, Wang W, Hu S, Yuan J, Zhang B, Hu T, Song G. Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing $NF-{\kappa}B$ activation. PLoS One 2014;9:e87810. https://doi.org/10.1371/journal.pone.0087810
  48. Yang CS, Ko SR, Cho BG, Shin DM, Yuk JM, Li S, Kim JM, Evans RM, Jung JS, Song DK. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock. J Cell Mol Med 2008;12:1739-53. https://doi.org/10.1111/j.1582-4934.2007.00181.x
  49. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X. Differential effects of ginsenosides on NO and $TNF-{\alpha}$ production by LPS-activated N9 microglia. Int Immunopharmacol 2007;7:313-20. https://doi.org/10.1016/j.intimp.2006.04.021
  50. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58:391-8. https://doi.org/10.1016/j.neuint.2010.12.015
  51. Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, Jung KJ, Kim MS, Kim YJ, Kim MK. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing $NF-{\kappa}B$ in LPS-stimulated RAW264.7 cells and mouse liver. J Ginseng Res 2013;37:54-63. https://doi.org/10.5142/jgr.2013.37.54
  52. Lee I-A, Hyam SR, Jang S-E, Han MJ, Kim D-H. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602. https://doi.org/10.1021/jf301372g
  53. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. The J Immunol 2004;173:3916-24. https://doi.org/10.4049/jimmunol.173.6.3916
  54. McGeer P, Itagaki S, Boyes B, McGeer E. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988;38:1285-91. https://doi.org/10.1212/WNL.38.8.1285
  55. Lee K-W, Jung SY, Choi S-M, Yang EJ. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement Altern Med 2012;12:196. https://doi.org/10.1186/1472-6882-12-S1-P196
  56. Hu J-F, Song X-Y, Chu S-F, Chen J, Ji H-J, Chen X-Y, Yuan Y-H, Han N, Zhang J-T, Chen N-H. Inhibitory effect of ginsenoside Rg1 on lipopolysaccharide-induced microglial activation in mice. Brain Res 2011;1374:8-14. https://doi.org/10.1016/j.brainres.2010.11.069
  57. Zong Y, Ai Q-L, Zhong L-M, Dai J-N, Yang P, He Y, Sun J, Ling E-A, Lu D. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase $C-{\gamma}1$ signaling pathway in murine BV-2 microglial cells. Curr Med Chem 2012;19:770-9. https://doi.org/10.2174/092986712798992066
  58. Sun X-C, Ren X-F, Chen L, Gao X-Q, Xie J-X, Chen W-F. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J Steroid Biochem Mol Biol 2016;155:94-103. https://doi.org/10.1016/j.jsbmb.2015.09.040
  59. Wang Y, Liu Y, Zhang X-Y, Xu L-H, Ouyang D-Y, Liu K-P, Pan H, He J, He X-H. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the $NF-{\kappa}B$ and PI3K/Akt/mTOR pathways. Int Immunopharmacol 2014;23:77-84. https://doi.org/10.1016/j.intimp.2014.07.028
  60. Gao Y, Chu S, Li J, Li J, Zhang Z, Xia C, Heng Y, Zhang M, Hu J, Wei G. Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol 2015;173:231-40. https://doi.org/10.1016/j.jep.2015.07.020
  61. Lee S-Y, Jeong J-J, Eun S-H, Kim D-H. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 2015;762:333-43. https://doi.org/10.1016/j.ejphar.2015.06.011
  62. Tao T, Chen F, Bo L, Xie Q, Yi W, Zou Y, Hu B, Li J, Deng X. Ginsenoside Rg1 protects mouse liver against ischemia-reperfusion injury through anti-inflammatory and anti-apoptosis properties. J Surg Res 2014;191:231-8. https://doi.org/10.1016/j.jss.2014.03.067
  63. Guo Y, Yang T, Lu J, Li S, Wan L, Long D, Li Q, Feng L, Li Y. Rb1 postconditioning attenuates liver warm ischemia-reperfusion injury through ROS-NO-HIF pathway. Life Sci 2011;88:598-605. https://doi.org/10.1016/j.lfs.2011.01.022
  64. Yang Y, Li X, Zhang L, Liu L, Jing G, Cai H. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating $PPAR{\gamma}/HO-1$ in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 2015;8:2484.
  65. Xie C-L, Li J-H, Wang W-W, Zheng G-Q, Wang L-X. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by down-regulating protease-activated receptor-1 expression. Life Sci 2015;121:145-51. https://doi.org/10.1016/j.lfs.2014.12.002
  66. Li G, Qian W, Zhao C. Analyzing the anti-ischemia-reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of $p38{\alpha}$ MAPK. Can J Physiol Pharmacol 2015;94:97-103.
  67. Joo SS, Yoo YM, Ahn BW, Nam SY, Kim Y-B, Hwang KW, Lee DI. Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol Pharm Bull 2008;31:1392-6. https://doi.org/10.1248/bpb.31.1392
  68. Lee B, Sur B, Park J, Kim S-H, Kwon S, Yeom M, Shim I, Lee H, Hahm D-H. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013;21:381-90. https://doi.org/10.4062/biomolther.2013.053
  69. Yoon S-J, Park J-Y, Choi S, Lee J-B, Jung H, Kim T-D, Yoon SR, Choi I, Shim S, Park Y-J. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015;463:1184-9. https://doi.org/10.1016/j.bbrc.2015.06.080
  70. Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-6. https://doi.org/10.1016/j.intimp.2011.10.023
  71. Lee SM. Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: inhibition of $TNF-{\alpha}$-induced $NF-{\kappa}B$, COX-2, and iNOS transcriptional expression. Phytother Res 2014;28:1893-6. https://doi.org/10.1002/ptr.5203
  72. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014;19:317-26. https://doi.org/10.1016/j.intimp.2014.01.018
  73. Kim E-J, Jung I-H, Van Le TK, Jeong J-J, Kim N-J, Kim D-H. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9. https://doi.org/10.1016/j.jep.2012.12.047
  74. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Perez ZEJ, Kim Y-J, Yang D-C. Ginsenoside Rg5: Rk1 attenuates $TNF-{\alpha}/IFN-{\gamma}$-induced production of thymus-and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of $NF-{\kappa}B$/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cell Dev Biol Anim 2015:1-9.
  75. Park E-K, Choo M-K, Han MJ, Kim D-H. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Allergy Immunol 2004;133:113-20. https://doi.org/10.1159/000076383
  76. Jung J-S, Kim D-H, Kim H-S. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in $IFN-{\gamma}$-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem Biophys Res Commun 2010;397:323-8. https://doi.org/10.1016/j.bbrc.2010.05.117
  77. Zheng H, Jeong Y, Song J, Ji GE. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int Immunopharmacol 2011;11:511-8. https://doi.org/10.1016/j.intimp.2010.12.022
  78. Bae E-A, Kim E-J, Park J-S, Kim H-S, Ryu JH, Kim D-H. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med 2006;72:627-33. https://doi.org/10.1055/s-2006-931563
  79. Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh 2 inhibit tumor necrosis $ factor-{\alpha}$-induced activation of the $NF-{\kappa}B$ and JNK pathways in human astroglial cells. Neurosci Lett 2007;421:37-41. https://doi.org/10.1016/j.neulet.2007.05.017
  80. Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH, Yan GH. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear $factor-{\kappa}B$ activation in a murine model of asthma. Mol Med Rep 2015;12:6946-54. https://doi.org/10.3892/mmr.2015.4272
  81. Bi W-Y, Fu B-D, Shen H-Q, Wei Q, Zhang C, Song Z, Qin Q-Q, Li H-P, Lv S, Wu S-C. Sulfated derivative of 20 (S)-ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-induced RAW264.7 macrophages. Inflammation 2012;35:1659-68. https://doi.org/10.1007/s10753-012-9482-1
  82. Yi P-F, Bi W-Y, Shen H-Q, Wei Q, Zhang L-Y, Dong H-B, Bai H-L, Zhang C, Song Z, Qin Q-Q. Inhibitory effects of sulfated 20 (S)-ginsenoside Rh2 on the release of pro-inflammatory mediators in LPS-induced RAW 264.7 cells. Eur J Pharmacol 2013;712:60-6. https://doi.org/10.1016/j.ejphar.2013.04.036
  83. Kim BH, Lee YG, Park TY, Kim HB, Rhee MH, Cho JY. Ginsenoside Rp1, a ginsenoside derivative, blocks lipopolysaccharide-induced interleukin-1beta production via suppression of the NF-kappaB pathway. Planta Med 2009;75:321-6. https://doi.org/10.1055/s-0028-1112218
  84. Shen T, Lee J-H, Park M-H, Lee Y-G, Rho H-S, Kwak Y-S, Rhee M-H, Park Y-C, Cho J-Y. Ginsenoside Rp 1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an $IKK{\beta}$-mediated $NF-{\kappa}B$ pathway in HEK293 cells. J Ginseng Res 2011;35:200-8. https://doi.org/10.5142/jgr.2011.35.2.200

Cited by

  1. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2 vol.7, pp.5, 2017, https://doi.org/10.1007/s13346-017-0402-7
  2. Protective Effects of Sesquiterpenoids from the Root of Panax ginseng on Fulminant Liver Injury Induced by Lipopolysaccharide/D-Galactosamine vol.66, pp.29, 2017, https://doi.org/10.1021/acs.jafc.8b02627
  3. Phosphatidylinositide 3-Kinase Contributes to the Anti-Inflammatory Effect of Abutilon crispum L. Medik Methanol Extract vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/1935902
  4. Insight into the Hydrolytic Selectivity of β -Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/4360252
  5. Antigastritis effects of Armillariella tabescens (Scop.) Sing. and the identification of its anti-inflammatory metabolites vol.70, pp.3, 2017, https://doi.org/10.1111/jphp.12871
  6. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method vol.23, pp.3, 2017, https://doi.org/10.3390/molecules23030545
  7. Use of Plant and Herb Derived Medicine for Therapeutic Usage in Cardiology vol.5, pp.2, 2018, https://doi.org/10.3390/medicines5020038
  8. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses vol.62, pp.13, 2018, https://doi.org/10.1002/mnfr.201800147
  9. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax ginseng Products vol.23, pp.8, 2017, https://doi.org/10.3390/molecules23082062
  10. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms vol.96, pp.9, 2017, https://doi.org/10.1139/cjpp-2018-0192
  11. Protective roles of ginseng against bacterial infection vol.5, pp.11, 2017, https://doi.org/10.15698/mic2018.11.654
  12. Effects of Red Ginseng Extract on the Pharmacokinetics and Elimination of Methotrexate via Mrp2 Regulation vol.23, pp.11, 2017, https://doi.org/10.3390/molecules23112948
  13. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism vol.21, pp.11, 2018, https://doi.org/10.1089/jmf.2018.4246
  14. Rg6, a rare ginsenoside, inhibits systemic inflammation through the induction of interleukin-10 and microRNA-146a vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-40690-8
  15. Ginsenoside Rb1, A Major Saponin from Panax ginseng , Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice vol.47, pp.8, 2017, https://doi.org/10.1142/s0192415x19500927
  16. Bar-HRM: a reliable and fast method for species identification of ginseng (Panax ginseng, Panax notoginseng, Talinum paniculatum and Phytolacca Americana) vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7660
  17. A stereo-selective growth inhibition profile of ginsenoside Rh2 on human colon cancer cells vol.17, pp.1, 2019, https://doi.org/10.1080/19476337.2019.1607562
  18. The Effects of Environmental Factors on Ginsenoside Biosynthetic Enzyme Gene Expression and Saponin Abundance vol.24, pp.1, 2017, https://doi.org/10.3390/molecules24010014
  19. Piper cubeba L. Methanol Extract Has Anti-Inflammatory Activity Targeting Src/Syk via NF-κB Inhibition vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1548125
  20. Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2910278
  21. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/4873870
  22. Phytogenic Feed Additive Enhance Innate and Humoral Immune Response to Newcastle Disease Virus Vaccination in Broiler Chickens vol.18, pp.2, 2017, https://doi.org/10.3923/ijps.2019.93.100
  23. 브로콜리 새싹 용매 추출물의 항산화 및 면역조절 활성 vol.32, pp.1, 2019, https://doi.org/10.9799/ksfan.2019.32.1.001
  24. Morinda citrifolia noni water extract enhances innate and adaptive immune responses in healthy mice, ex vivo, and in vitro vol.33, pp.3, 2017, https://doi.org/10.1002/ptr.6256
  25. Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract vol.20, pp.5, 2017, https://doi.org/10.3390/ijms20051043
  26. Analysis of major ginsenosides in various ginseng samples vol.62, pp.1, 2017, https://doi.org/10.3839/jabc.2019.013
  27. Ginsenoside composition of Panax ginseng flower extracts obtained using different high hydrostatic pressure extraction conditions vol.46, pp.1, 2017, https://doi.org/10.5010/jpb.2019.46.1.056
  28. Dehydroabietic Acid Suppresses Inflammatory Response Via Suppression of Src-, Syk-, and TAK1-Mediated Pathways vol.20, pp.7, 2017, https://doi.org/10.3390/ijms20071593
  29. Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Hu vol.24, pp.14, 2019, https://doi.org/10.3390/molecules24142618
  30. Microbial Conversion of Protopanaxadiol-Type Ginsenosides by the Edible and Medicinal Mushroom Schizophyllum commune: A Green Biotransformation Strategy vol.4, pp.8, 2019, https://doi.org/10.1021/acsomega.9b01001
  31. Improved Antioxidant, Anti-inflammatory, and Anti-adipogenic Properties of Hydroponic Ginseng Fermented by Leuconostoc mesenteroides KCCM 12010P vol.24, pp.18, 2017, https://doi.org/10.3390/molecules24183359
  32. Inhibitory Effects of Protopanaxadiol on Lipopolysaccharide-Induced Reactive Oxygen Species Production and MUC5AC Expression in Human Airway Epithelial Cells vol.62, pp.9, 2017, https://doi.org/10.3342/kjorl-hns.2018.00920
  33. Pharmacological effects of ginseng on infectious diseases vol.27, pp.5, 2017, https://doi.org/10.1007/s10787-019-00630-4
  34. Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer vol.19, pp.25, 2017, https://doi.org/10.2174/1568026619666191018100848
  35. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2017, https://doi.org/10.1007/s12272-019-01184-3
  36. Anti-Inflammatory Diets and Fatigue vol.11, pp.10, 2019, https://doi.org/10.3390/nu11102315
  37. Development of a Validated UPLC-MS/MS Method for Analyzing Major Ginseng Saponins from Various Ginseng Species vol.24, pp.22, 2019, https://doi.org/10.3390/molecules24224065
  38. Ginsenoside Rg1 abolish imiquimod‐induced psoriasis‐like dermatitis in BALB/c mice via downregulating NF‐κB signaling pathway vol.43, pp.11, 2017, https://doi.org/10.1111/jfbc.13032
  39. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots vol.19, pp.None, 2019, https://doi.org/10.1186/s12870-019-1682-5
  40. Fermented Korean Red Ginseng Extract Enriched in Rd and Rg3 Protects against Non-Alcoholic Fatty Liver Disease through Regulation of mTORC1 vol.11, pp.12, 2019, https://doi.org/10.3390/nu11122963
  41. Ginsenoside-Rb1 Improved Diabetic Cardiomyopathy through Regulating Calcium Signaling by Alleviating Protein O-GlcNAcylation vol.67, pp.51, 2019, https://doi.org/10.1021/acs.jafc.9b05706
  42. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems vol.27, pp.4, 2020, https://doi.org/10.2174/0929867326666190809221332
  43. A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3 vol.10, pp.1, 2017, https://doi.org/10.3390/biom10010122
  44. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus -induced skin infections vol.27, pp.1, 2017, https://doi.org/10.1080/10717544.2020.1756985
  45. Network Pharmacology Analysis and Molecular Characterization of the Herbal Medicine Formulation Qi-Fu-Yin for the Inhibition of the Neuroinflammatory Biomarker iNOS in Microglial BV-2 Cells: Implicati vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/5780703
  46. Reversine and herbal Xiang-Sha-Liu-Jun-Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway vol.15, pp.1, 2017, https://doi.org/10.1515/biol-2020-0059
  47. Reversine and herbal Xiang-Sha-Liu-Jun-Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway vol.15, pp.1, 2017, https://doi.org/10.1515/biol-2020-0059
  48. Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8827527
  49. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.01593
  50. Natural Product Ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in Cancer Treatment: A Review of the Pharmacological Mechanisms and Pharmacokinetics vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.00521
  51. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages vol.10, pp.2, 2017, https://doi.org/10.3390/biom10020238
  52. Herb–Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats vol.25, pp.3, 2020, https://doi.org/10.3390/molecules25030622
  53. Ginseng Extract Ameliorates the Negative Physiological Effects of Heat Stress by Supporting Heat Shock Response and Improving Intestinal Barrier Integrity: Evidence from Studies with Heat-Stressed Cac vol.25, pp.4, 2017, https://doi.org/10.3390/molecules25040835
  54. 인삼 품종별 뿌리 추출물의 NMDA 수용체 길항 효과 및 진세노사이드 함량 vol.28, pp.1, 2020, https://doi.org/10.7783/kjmcs.2020.28.1.9
  55. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(S)‐Rg3 by three thermostable glycosidases vol.128, pp.3, 2020, https://doi.org/10.1111/jam.14513
  56. Advances in Pharmacological Activities of Terpenoids vol.15, pp.3, 2017, https://doi.org/10.1177/1934578x20903555
  57. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng vol.10, pp.3, 2020, https://doi.org/10.3390/biom10030444
  58. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2017, https://doi.org/10.3892/mmr.2020.10935
  59. Anti-Inflammatory Functions of Alverine via Targeting Src in the NF-κB Pathway vol.10, pp.4, 2017, https://doi.org/10.3390/biom10040611
  60. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract vol.10, pp.4, 2017, https://doi.org/10.3390/biom10040648
  61. Synthesis and Structure-Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents vol.11, pp.4, 2017, https://doi.org/10.1021/acsmedchemlett.9b00562
  62. Antimelanogenic Activity of Ocotillol‐Type Saponins from Panax vietnamensis vol.17, pp.5, 2017, https://doi.org/10.1002/cbdv.202000037
  63. Effects of different polyaniline emeraldine compositions in electrodepositing ginsenoside encapsulated poly(lactic‐co‐glycolic acid) microcapsules coating: Physicochemical characterization vol.108, pp.5, 2020, https://doi.org/10.1002/jbm.a.36891
  64. The “Treatise on the spleen and stomach” ( Pí Wèi Lùn ) as the first record of multiple sclerosis in the medical literature – A hypothesis based on the analys vol.10, pp.3, 2017, https://doi.org/10.1016/j.jtcme.2020.02.009
  65. Molecular Drug Discovery of Single Ginsenoside Compounds as a Potent Bruton’s Tyrosine Kinase Inhibitor vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093065
  66. Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice vol.68, pp.18, 2017, https://doi.org/10.1021/acs.jafc.0c00605
  67. Nitric Oxide Releasing Polyamide Dendrimer with Anti-inflammatory Activity vol.2, pp.5, 2017, https://doi.org/10.1021/acsapm.0c00203
  68. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway vol.11, pp.6, 2017, https://doi.org/10.1038/s41419-020-2597-7
  69. Taurine and Ginsenoside Rf Induce BDNF Expression in SH-SY5Y Cells: A Potential Role of BDNF in Corticosterone-Triggered Cellular Damage vol.25, pp.12, 2017, https://doi.org/10.3390/molecules25122819
  70. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells vol.68, pp.32, 2017, https://doi.org/10.1021/acs.jafc.0c03698
  71. Minor Ginsenoside Rg2 and Rh1 Attenuates LPS-Induced Acute Liver and Kidney Damages via Downregulating Activation of TLR4-STAT1 and Inflammatory Cytokine Production in Macrophages vol.21, pp.18, 2017, https://doi.org/10.3390/ijms21186656
  72. Highly regioselective bioconversion of ginsenoside Re into 20(S/R)-Rf2 by an optimized culture of Cordyceps sinensis vol.44, pp.33, 2017, https://doi.org/10.1039/d0nj01828g
  73. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  74. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  75. Ginsenoside Rd therapy improves histological and functional recovery in a rat model of inflammatory bowel disease vol.34, pp.11, 2017, https://doi.org/10.1002/ptr.6734
  76. Biochemical and molecular characterization of enhanced growth of Panax ginseng C. A. Meyer treated with atmospheric pressure plasma vol.53, pp.49, 2020, https://doi.org/10.1088/1361-6463/abad61
  77. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions vol.25, pp.24, 2017, https://doi.org/10.3390/molecules25245854
  78. Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway vol.68, pp.51, 2017, https://doi.org/10.1021/acs.jafc.0c06474
  79. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2017, https://doi.org/10.1002/med.21743
  80. Effects of Ginsenoside Rf on dextran sodium sulfate-induced colitis in mice vol.32, pp.1, 2017, https://doi.org/10.1080/09540105.2021.1950128
  81. The Japanese Herbal (Kampo) Medicine Hochuekkito Attenuates Lung Inflammation in Lung Emphysema vol.44, pp.1, 2017, https://doi.org/10.1248/bpb.b20-00556
  82. Changes in the Leaf Physiological Characteristics and Tissue-Specific Distribution of Ginsenosides in Panax ginseng During Flowering Stage Under Cold Stress vol.9, pp.None, 2017, https://doi.org/10.3389/fbioe.2021.637324
  83. Effective Material Basis and Mechanism Analysis of Compound Banmao Capsule against Tumors Using Integrative Network Pharmacology and Molecular Docking vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6653460
  84. Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampal Neuronal Apoptosis in Experimental Vascular Dementia Mice by Promoting GPR30 Expression vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/2412220
  85. Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.616409
  86. Fermented ginseng attenuates lipopolysaccharide-induced inflammatory responses by activating the TLR4/MAPK signaling pathway and remediating gut barrier vol.12, pp.2, 2017, https://doi.org/10.1039/d0fo02404j
  87. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  88. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis vol.69, pp.5, 2017, https://doi.org/10.1021/acs.jafc.0c06989
  89. Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances vol.10, pp.3, 2017, https://doi.org/10.3390/cells10030486
  90. Olea europaea Suppresses Inflammation by Targeting TAK1-Mediated MAP Kinase Activation vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061540
  91. Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats vol.12, pp.1, 2021, https://doi.org/10.5478/msl.2021.12.1.16
  92. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast vol.14, pp.4, 2017, https://doi.org/10.3390/ph14040295
  93. Ginsenoside Rb1 Attenuates TGF-β1-Induced MUC4/5AC Expression and Epithelial-Mesenchymal Transition in Human Airway Epithelial Cells vol.64, pp.4, 2017, https://doi.org/10.3342/kjorl-hns.2020.00150
  94. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway vol.26, pp.9, 2017, https://doi.org/10.3390/molecules26092529
  95. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract vol.26, pp.10, 2017, https://doi.org/10.3390/molecules26103053
  96. The effect of ginsenosides on depression in preclinical studies: A systematic review and meta-analysis vol.45, pp.3, 2017, https://doi.org/10.1016/j.jgr.2020.08.006
  97. Transcriptome-Wide Analysis for Ginsenoside Rb3 Synthesis-Related Genes and Study on the Expression of Methyl Jasmonate Treatment in Panax ginseng vol.11, pp.5, 2017, https://doi.org/10.3390/life11050387
  98. Pharmacological activities of ginsenoside Rg5 (Review) vol.22, pp.2, 2017, https://doi.org/10.3892/etm.2021.10272
  99. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, pp.None, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  100. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections vol.26, pp.13, 2017, https://doi.org/10.3390/molecules26134095
  101. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide vol.13, pp.7, 2017, https://doi.org/10.3390/pharmaceutics13071022
  102. Anti-Cancer Effect of Panax Ginseng and Its Metabolites: From Traditional Medicine to Modern Drug Discovery vol.9, pp.8, 2021, https://doi.org/10.3390/pr9081344
  103. Evaluation of the Protective Effect of Red Ginseng on Lipid Profile, Endothelial and Oxidative Damage after Splenectomy in Rats vol.6, pp.2, 2017, https://doi.org/10.25000/acem.952140
  104. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions vol.100, pp.7, 2017, https://doi.org/10.1016/j.ejcb.2021.151179
  105. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  106. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2017, https://doi.org/10.3390/pharmaceutics13091496
  107. Design, Synthesis, and Antibacterial Evaluation of Novel Ocotillol Derivatives and Their Synergistic Effects with Conventional Antibiotics vol.26, pp.19, 2017, https://doi.org/10.3390/molecules26195969
  108. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2017, https://doi.org/10.1016/j.heliyon.2021.e08354
  109. A novel strategy to reveal clinical advantages and molecular mechanism of aidi injection in the treatment of pancreatic cancer based on network meta-analysis and network pharmacology vol.285, pp.None, 2022, https://doi.org/10.1016/j.jep.2021.114852