DOI QR코드

DOI QR Code

Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng)

  • Jo, Ick Hyun (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Young Chang (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Dong Hwi (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Kee Hong (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Hyun, Tae Kyung (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University) ;
  • Bang, Kyong Hwan (Department of Planning and Coordination, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • Received : 2016.05.14
  • Accepted : 2016.09.19
  • Published : 2017.10.15

Abstract

The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

Keywords

References

  1. Lee BY. Status of Korean ginseng industry and development of new ginseng products. Food Ind Nutr 2003;8:1-9.
  2. Yun T. Brief introduction of Panax ginseng CA Meyer. J Korean Med Sci 2001;16(Suppl):3-5. https://doi.org/10.3346/jkms.2001.16.S.S3
  3. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  4. Bang KH, Jo IH, Kim YC, Kim JU, Park HW, Shin MR, Kim YB, Kim OT, Hyun DY, Kim DH, et al. Molecular identification of Korean ginseng cultivars (Panax ginseng C. A. Mey.) using peptide nucleic acid (PNA) microarray. Korean J Med Crop Sci 2012;20:387-92. https://doi.org/10.7783/KJMCS.2012.20.5.387
  5. Park MJ, Kim MK, In JG, Yang DC. Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res Int 2006;39:568-74. https://doi.org/10.1016/j.foodres.2005.11.004
  6. Jo IH, Bang KH, Kim YC, Lee JW, Seo AY, Seong BJ, Kim HH, Kim DH, Cha SW, Cho YG, et al. Rapid identification of ginseng cultivars (Panax ginseng Meyer) using novel SNP-based probes. J Ginseng Res 2011;35:504-13. https://doi.org/10.5142/jgr.2011.35.4.504
  7. Dutfield G. Food, biological diversity and intellectual property: The role of the international union for the protection of new varieties of plants (UPOV). Intellectual Property Issue Paper 2011;9:1-19.
  8. Kwon YS, Lee JM, Yi GB, Yi SI, Kim KM, Soh EH, Bae KM, Park EK, Song IH, Kim BD. Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol Cells 2005;19:428-35.
  9. Jo IH, Kim YC, Kim JU, Lee SH, Lim JY, Moon JY, Noh BS, Hyun DY, Kim DH, Kim KH, et al. A rapid identification of Korean ginseng cultivar, Cheonryang, using specific DNA markers. Korean J Med Crop Sci 2014;22:429-34. https://doi.org/10.7783/KJMCS.2014.22.6.429
  10. In DS, Kim YC, Bang KH, Chung JW, Kim OT, Hyun DY, Cha SW, Kim TS, Seong NS. Genetic relationships of Panax species by RAPD and ISSR analyses. Korean J Med Crop Sci 2005;13:249-53.
  11. Chowdhury MA, Vandenberg B, Warkentin T. Cultivar identification and genetic relationship among selected breeding lines and chickpea (Cicer arietinum L.). Euphytica 2002;127:317-25. https://doi.org/10.1023/A:1020366819075
  12. Gostimskii SA, Kokaeva ZG, Konovalov FA. Studying plant genome variation using molecular markers. Genetika 2005;41:480-92.
  13. Fushimi H, Komatsu K, Isobe M, Namba T. Application of PCR-RFLP and MASA analyses on 18S ribosomal RNA gene sequence for the identification of three ginseng drugs. Biol Pharm Bull 1997;20:765-9. https://doi.org/10.1248/bpb.20.765
  14. Ngan F, Shaw P, But PPH, Wang J. Molecular authentication of Panax species. Phytochemistry 1999;50:787-91. https://doi.org/10.1016/S0031-9422(98)00606-2
  15. Um JY, Chung HS, Kim MS, Na HJ, Kwon HJ, Kim JJ, Lee KM, Lee SJ, Lim JP, Do KR, et al. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull 2001;24:872-5. https://doi.org/10.1248/bpb.24.872
  16. Yang DC, Kim MS. DNA analysis of ginseng using PCR-aided RFLP technology. J Ginseng Res 2003;27:146-50. https://doi.org/10.5142/JGR.2003.27.3.146
  17. Shim YH, Park CD, Kim DH, Cho JH, Cho MH, Kim HJ. Identification of Panax species in the herbal medicine preparations using gradient PCR method. Biol Pharm Bulln 2005;28:671-6. https://doi.org/10.1248/bpb.28.671
  18. Kim OT, Bang KH, In DS, Lee JW, Kim YC, Shin YS, Hyun DY, Lee SS, Cha SW, Seong NS. Molecular authentication of ginseng cultivars by comparison of internal transcribed spacer and 5.8S rDNA sequences. Plant Biotechnol Rep 2007;1:163-7. https://doi.org/10.1007/s11816-007-0019-2
  19. Diao Y, Lin XM, Liao CL, Tang CZ, Chen ZJ, Hu ZL. Authentication of Panax ginseng from its adulterants by PCR-RFLP and ARMS. Planta medica 2009;75: 557-60. https://doi.org/10.1055/s-0029-1185321
  20. Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet 1994;8:116-22.
  21. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 1993;85:985-93.
  22. Bai D, Brandle J, Reeleder R. Genetic diversity in North American ginseng (Panax quinquefolius L.) grown in Ontario detected by RAPD analysis. Genome 1997;40:111-5. https://doi.org/10.1139/g97-015
  23. Shao AJ, Li X, Huang LQ, Wei JH, Lin SF. Genetic analysis of cultivated ginseng population with the assistance of RAPD technology. Zhongguo Zhongyao Zazhi 2004;29:1033-6.
  24. Lim W, Mudge KW, Weston LA. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med 2007;73:71-6.
  25. Bang KH, Chung JW, Kim YC, Jo IH, Kim JU, Shin MR, Hyun DY, Kim DH, Cha SW, Kim KH, et al. Analysis of genetic polymorphism of Korean ginseng cultivars and breeding lines using RAPD markers. Korean J Intl Agri 2013;25:184-93. https://doi.org/10.12719/KSIA.2013.25.2.184
  26. Ardiel GS, Grewal TS, Deberdt P, Rossnagel BG, Scoles GJ. Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor Appl Genet 2002;104:457-64. https://doi.org/10.1007/s001220100696
  27. Deng Z, Huang S, Xiao S, Gmitter FG. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene form Poncorus trifoliate. Genome 1997;40:697-704. https://doi.org/10.1139/g97-792
  28. Ripley VL, Roslinsky V. Identification of an ISSR marker for 2-propenyl glucosinolate content in Brassica juncea L. and conversion to a SCAR marker. Mol Breed 2005;16:57-66. https://doi.org/10.1007/s11032-005-3572-9
  29. Lee JW, Kim YC, Jo IH, Seo AY, Lee JH, Kim OT, Hyun DY, Cha SW, Bang KH, Cho JH. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars. (Panax ginseng C. A. Meyer). J Ginseng Res 2011;35:52-9. https://doi.org/10.5142/jgr.2011.35.1.052
  30. Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science 1989;245:1434-5. https://doi.org/10.1126/science.2781285
  31. Bang KH, Lee JW, Kim YC, Kim DH, Lee EH, Jeung JU. Construction of genomic DNA library of Korean ginseng(Panax ginseng C. A Meyer) and development of sequence-tagged sites. Biol Pharm Bull 2010;33:1579-88. https://doi.org/10.1248/bpb.33.1579
  32. Rabinowicz PD, McCombie WR, Martienssen RA. Gene enrichment in plant genomic shotgun libraries. Curr Opin Plant Biol 2003;6:150-6. https://doi.org/10.1016/S1369-5266(03)00008-6
  33. Gruenbaum Y, NavehMany T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature 1981;292:860-2. https://doi.org/10.1038/292860a0
  34. Bennetzen JL, Schrick K, Springer PS, Brown WE, SanMiguel P. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 1994;37:565-76. https://doi.org/10.1139/g94-081
  35. Jo IH, Bang KH, Kim YC, Kim JU, Shin MR, Moon JY, Noh BS, Hyun DY, Kim DH, Cha SW. Analysis of mitochondrial DNA sequence and molecular marker development for identification of Panax species. Korean J Med Crop Sci 2013;21:91-6. https://doi.org/10.7783/KJMCS.2013.21.2.91
  36. Jo IH, Shin MR, Kim YC, Lee SH, Kim JU, Moon JY, Noh BS, Kang ST, Lee DJ, Hyun DY, et al. Discrimination of Korean ginseng cultivars by sequence tagged sites (STS) markers. Korean J Med Crop Sci 2013;21:353-60. https://doi.org/10.7783/KJMCS.2013.21.5.353
  37. Hwang TY, Jung SM, Lee SK, Park HM, Jeong KH, Lee YY, Kim SL, Yun HT, Lee JE, Kim DW, et al. Discrimination of 110 Korean soybean cultivars by sequence tagged sites(STS)-CAPS markers. Korean J Breeding Sci 2012;44: 258-72.
  38. Hamada SR, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci U S A 1982;79:6465-9. https://doi.org/10.1073/pnas.79.21.6465
  39. Tautz D, Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984;12:4127-38. https://doi.org/10.1093/nar/12.10.4127
  40. Aggarwal RK, Lalremruata A, Velavan TP, Sowjanya AP, Singh L. Development and characterization of ten novel microsatellite markers from olive Ridley(-Lepidochelys olivacea). Conserv Genet 2008;9:981-4. https://doi.org/10.1007/s10592-007-9421-0
  41. Parida SK, Kalia SK, Sunita K, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, et al. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 2009;118:327-38. https://doi.org/10.1007/s00122-008-0902-4
  42. Kim JK, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KH. Identification of new microsatellite markers in Panax ginseng. Mol Cells 2007;24:60-8.
  43. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng CA Meyer). Conserv Genet 2007;8:1507-9. https://doi.org/10.1007/s10592-007-9284-4
  44. Van Dan N, Ramchiary N, Choi S, Uhm T, Yang TJ, Ahn IO, Lim Y. Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv Genet 2010;11:1223-5. https://doi.org/10.1007/s10592-009-9924-y
  45. Jo BH, Suh DS, Cho EM, Kim JK, Ryu GH, Chung KW. Characterization of polymorphic microsatellite loci in cultivated and wild Panax ginseng. Genes Genomics 2009;31:119-27. https://doi.org/10.1007/BF03191145
  46. Hon CC, Chow YC, Zeng FY, Leung FC. Genetic authentication of ginseng and other traditional Chinese medicine. Acta Pharmacol Sin 2003;24:841-6.
  47. Kim KJ, Lee HL. Complete chloroplast genome sequence from Korean Ginseng (Panax schiseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004;11:247-61. https://doi.org/10.1093/dnares/11.4.247
  48. Yang CJ, Wang J, Mu LQ, Li SC, Liu GJ, Hu CQ. Development of an EST-SSR marker in Panax ginseng. Chin J Agric Biotechnol 2008;5:175-81.
  49. Xu YH, Jin H, Kim YC, Bang KH, Cha SW, Zhang LX. Genetic diversity and genetic structures in ginseng landraces (cultivars) by SRAP Analysis. Korean J Med Crop Sci 2010;18:180-5.
  50. Kim NH, Choi HI, Ahn IO, Yang TJ. EST-SSR marker sets for practical authentication of all nine registered ginseng cultivars in Korea. J Ginseng Res 2012;36:298-307. https://doi.org/10.5142/jgr.2012.36.3.298
  51. Gupta PK, Roy JK, Prasad M. single nucleotide polymorphism: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 2001;80:524-35.
  52. Wang H, Sun H, Kwon WS, Jin H, Yang DC. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20:41-5. https://doi.org/10.1080/19401730902856738
  53. Sun H, Wang H, Kwon WS, Kim YJ, In JG, Yang DC. A simple and rapid technique for the authentication of the ginseng cultivar, Yunpoong, using an SNP marker in a large sample of ginseng leaves. Gene 2011;487:75-9. https://doi.org/10.1016/j.gene.2011.05.021
  54. Jo IH, Lee SH, Kim YC, Kim DH, Kim HS, Kim KH, Chung JW, Bang KH. De novo transcriptome assembly and the identification of gene-associated single-nucleotide polymorphism markers in Asian and American ginseng roots. Mol Genet Genomics 2015;290:1055-65. https://doi.org/10.1007/s00438-014-0974-6
  55. Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M. High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 2008;118:1-14. https://doi.org/10.1007/s00122-008-0870-8
  56. Distefano G, Caruso M, La Malfa S, Gentile A, Wu SB. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR-An example in citrus. PLoS ONE 2012;7:e44202. https://doi.org/10.1371/journal.pone.0044202
  57. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003;49:853-60. https://doi.org/10.1373/49.6.853
  58. Jaakola L, Suokas M, Haggman. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 2010;123:492-500.

Cited by

  1. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method vol.23, pp.3, 2017, https://doi.org/10.3390/molecules23030545
  2. Major Achievement and Prospect of Ginseng Breeding in Korea vol.52, pp.1, 2017, https://doi.org/10.9787/kjbs.2020.52.s.170
  3. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects vol.26, pp.23, 2017, https://doi.org/10.3390/molecules26237065