• Title/Summary/Keyword: ginsenoside$^{60}Co\

Search Result 16, Processing Time 0.025 seconds

Production of Ginsenoside in the Hairy Roots Irradiated by 60Co γ on Panax ginseng C.A Meyer (60Co γ 를 조사한 인삼모상근 돌연변이 세포주의 생장과 Ginsenoside의 생산)

  • Choi, Kyu-Myoung;Kwon, Jung-Hee;Ban, Sung-Hee;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.219-225
    • /
    • 2002
  • Study was performed to know the effects of Panax ginseng C.A. Meyer hairy root due to $^{60}$ Co ${\gamma}$-ray irradiation. We irradiated the hairy roots under the various $^{60}$ Co ${\gamma}$-ray; 0.5~4 Krad. The growth of hairy roots is inhibited over 3 Krad treatment. The lateral roots are used as a cell line after removing the apical meristem of hairy roots irradiated below 2 Krad. We selected 206 hairy root cell lines having various different growth rates and forms, and incubated in the 1/2 Murashige & Skoog(MS) medium in the absence of hormone. We selected 10 out of 206 showing superior growth. Among those, ${\gamma}$-GHR 70 and ${\gamma}$-GHR 94 showed higher growth; 34.5, 44.7%, respectively. We observed shapable, sizable characteristics according to the width of the primary roots, the process formation of the lateral roots, and the growth of lateral roots. The discriminable cell line showed that primary root is thinner, and has a vigorous growth. 8 out of 10 had much more contents than control in the aspect of the ginsenoside. ${\gamma}$-GHR 59 and ${\gamma}$-GHR 94 showed higher contents; 19, 16.9%, respectively. Therefore, we selected ${\gamma}$-GHR 70, ${\gamma}$-GHR 94 as a superior cell line in the aspect of ginsenoside contents, and growth among those irradiated by ${\gamma}$-ray. According to content of ginsenoside, Rb$_2$ effective in anticancer has 7.5% of ${\gamma}$-GHR 59. Rc, also effective in anticancer showed 16.2% content increasement of ${\gamma}$-GHR 69. It is thought that those lines will be effective in manufacturing ginsenoside. Gene analysis (VNTRP) related to the mutation is in progress.

Saponin Analysis and Red Ginseng Production using the Simplified Method of Korean Ginseng (Panax ginseng C.A.Meyer) (고려인삼(Panax ginseng C.A.Meyer)의 간이법에 의한 홍삼제조 및 사포닌 성분분석)

  • In Jun-Gyo;Kim Eun-Jeong;Lee Bum-Soo;Park Myung-Han;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2006
  • In order to enhance the components of bioactive ginsenosides and the manufacturing process of red ginseng, we developed the simplified method for red ginseng production. The red ginseng extract was prepared from red ginseng produced with the simplified method, and the production rate of extract ($62^{\circ}$ brix) was more than 60%. The ginsenosides of red ginseng were purified and analyzed by HPLC using ELSD. Ginsenoside-$Rg_3,\;Rh_2$ and $Rh_1$, specific artifacts found only in red ginseng, were detected by HPLC. Especially, contents of ginsenoside-$Rg_3$ and Rh1 were detected high than two times in red ginseng produced the simplified method compared to commercial products.

Increase of Functional Saponin by Acidic Treatemnt and Temperature of Red Ginseng Extract (홍삼엑기스의 산(pH) 및 온도처리에 의한 기능성 사포닌 함량증대)

  • In Jun-Gyo;Lee Bum-Soo;Kim Eun-Jeong;Park Myung-Han;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.139-143
    • /
    • 2006
  • To increase the contents of functional ginsenosides by conversion, especially ginsenoside-$Rg_3$ and $Rh_2$, the extracts of red ginseng were treated with high temperature and citric acid or apricot extract. When the extracts were subject to $120^{\circ}C$ for 2 hours, the content of ginsenoside-$Rg_3$ was increased 2 times than in control. When the extracts were subject to $120^{\circ}C$ and acidic conditions adjusted with citric acid, the ginsenoside-$Rg_3$, was detected 2.8 times, but other ginsenoside were decreased heavily to 65%. When the extract were treated with for 12 hours at $80^{\circ}C$, the content of ginsenoside-$Rg_3$ was increased to 3.3 times, Also, when the red ginseng extracts were treated with apricot extract, the ginsenoside-$Rg_3$ was detected to 4 times than in control, but other ginsenoside were decreased lightly to 35%, not same as at the $120^{\circ}C$ treatment.

Growth and Ginsenoside Content of One Year Old Ginseng Seedlings in Hydroponic Culture over a Range of Days after Transplanting (수경재배 시 1년생 묘삼 이식 후 경과일수에 따른 인삼의 생육 및 Ginsenoside 함량)

  • Jeong, Dae Hui;Lee, Dae Young;Jang, In Bae;Yu, Jin;Park, Kee Choon;Lee, Eung Ho;Kim, Young Jun;Park, Hong Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2018
  • Background: Ginseng produced by hydroponics can be cultivated without using agricultural chemicals; thus, it can be used as a raw materials for functional foods, medicines, and cosmetics. This study aimed to determine the optimal harvesting time to obtain the highest levels of ginsenoside and ginseng, as this was not previously unknown. Methods and Results: One-year-old organic ginseng seedlings were transplanted and cultivated using hydroponics for 150 days in a venlo-type greenhouse, using ginseng nursery bed soil and a nutrient solution ($NO_3{^-}-N$; 6.165, P; 3.525, K; 5.625, Ca; 4.365, Mg; 5.085, S; $5.31mEq/{\ell}$). Ginsenoside content and fresh and dry weights were higher at 120 days after transplanting than at 30, 60, 90, and 150 days. Total ginsenoside content was 11.86 times higher in the leaf and stem than in the root at 120 days after transplanting. Ginsenosides F1, F2, F3, and F5 were detected in ginseng leaves and stems. These chemical compounds are known to be effective in altering skin properties, including whitening, anti-inflammation, and anti-aging. Conclusions: Optimal harvesting time for ginseng cultivated using hydroponics was 120 days after transplanting when the biomass and ginsenoside content were highest.

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Ginsenoside F1 Modulates Cellular Responses of Skin Melanoma Cells

  • Yoo, Dae-Sung;Rho, Ho-Sik;Lee, Yong-Gyu;Yeom, Myung-Hun;Kim, Duck-Hee;Lee, Sang-Jin;Hong, Sung-Youl;Lee, Jae-Hwi;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Ginsenoside (G)-F1 is an enzymatic metabolite generated from G-Rg1. Although this metabolite has been reported to suppress platelet aggregation and to reduce gap junction-mediated intercellular communication, the modulatory activity of G-F1 on the functional role of skin-derived cells has not yet been elucidated. In this study, we evaluated the regulatory role of G-F1 on the cellular responses of B16 melanoma cells. G-F1 strongly suppressed the proliferation of B16 cells up to 60% at 200 ${\mu}g/mL$, while only diminishing the viability of HEK293 cells up to 30%. Furthermore, G-F1 remarkably induced morphological change and clustering of B16 melanoma cells. The melanin production of B16 cells was also significantly blocked by G-F1 up to 70%. Interestingly, intracellular signaling events involved in cell proliferation, migration, and morphological change were up-regulated at 1 h incubation but down-regulated at 12 h. Therefore, our results suggest that G-F1 can be applied as a novel anti-skin cancer drug with anti-proliferative and anti-migration features.

Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation (60Co) of Adventitious Roots

  • Zhang, Jun-Ying;Bae, Tae-Woong;Boo, Kyung-Hwan;Sun, Hyeon-Jin;Song, In-Ja;Pham, Chi-Hoa;Ganesan, Markkandan;Yang, Dae-Hwa;Kang, Hong-Gyu;Ko, Suk-Min;Riu, Key-Zung;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.283-293
    • /
    • 2011
  • With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of ${\gamma}$-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

Component Profile Analysis of Irradiated Korean White Ginseng Powder (방사선 조사 인삼의 성분변화에 관한 분석)

  • 한병훈;한용남
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.138-143
    • /
    • 1995
  • Currently, some food materials are disinfected by $\gamma$-irradiation (using Co-60) or ethylene oxide treatment. These treatments were applied to ginseng powder and the ginseng components such as ginsenosides, polyacetylenes and phenolic acids were analyzed by HPLC to determine any compositional changes due to irradiation. No appreciable difference was observed in the HPLC pattern of ginsenosides, polyacetylenes of ginseng powder after 10 key irradiation or ethylene oxide treatment (EO $CO_2$= 3 : 7, w/wfb) from those of untreated fresh ginseng powder when they were analyzed soon after treatments. When the ginseng powders were stored at room temperature for three years after the same treatment, the HPLC patterns of polyacetylenes and phenolic acid fraction showed appreciable change from those of fresh ginseng powder, however, the HPLC patterns of three year old samples did not show any appreciable difference.

  • PDF

The Glycosides of Araliaceaus Drugs and their Biological Activities

  • Hahn, Dug-Ryong;Kasai, Ryoji;Kim, Jeung-Hee;Taniyasu, Shigenori;Tanaka, Osamu;Kim, Chang-Johng;Park, Myong-Ja
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.78-84
    • /
    • 1986
  • Among the Araliaceae plants indigenous to Korea, those whose medicinal usage are comparatively high have been selected in this serial studies. Chiisanoside and acanthoside D were isolated and identified from the Acanthopanax chinensis leaves and root bark. Chiisanoside and acanthoside D have been found to have the lowering S-GPT, S-GOT value and BSP-retention rate and survival rate, anti-histaminic effect in the toxic state through the bio-pharmacological experiments. ${\alpha}-hederin$, hederagenin pentaglycoside were isolated both stem bark of Kalopanax pictum Nakai var. magnificum and Kalopanax pictum Nakai var. Max. respectively. Syringoside, acanthoside D were also isolated from the root bark of Acanthopanax koreanum. The biological activity of ginsenoside $Rb_1$, $Rg_1$, Re were examined. Ginsenoside $Rb_1$, $Rg_1$, Re promotes the antileaking effect in X-ray (Co 60) irradiated toxic state.

  • PDF

Effect of Inoculum Size on Biomass Accumulation and Ginsenoside Production by Large-Scale Cell Suspension Cultures of Panax ginseng

  • Thanh Nguyen Trung;Murthy Hosakatte Niranjana;Yu Kee-Won;Jeong Cheol Seung;Hahn Eun-Joo;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-268
    • /
    • 2004
  • Cell growth and ginseng saponin production by large-scale suspension (bioreactor) cultures of Panax ginseng were investigated under various inoculum sizes. Cell growth was low at an inoculum size of 40 g FW/L, and the maximum cell growth was obtained with increasing inoculum size up to 100 g FW/L. The cell density of 333 g FW/L and 12.7 g DW/L was obtained at inoculum size of 100 g FW/L after 30 days of cultivation. Maximum saponin production of $4.40\;\cal{mg/g}$ DW was achieved at 60 g FW/L of inoculum size. Thus, inoculum size 60 g FW/L was suitable for optimum biomass accumulation as well as saponin production during bioreactor cultivation of ginseng suspension cells.