• Title/Summary/Keyword: ginseng yield

Search Result 418, Processing Time 0.036 seconds

A Simple Method for the Preparation of Crude Gintonin from Ginseng Root, Stem, and Leaf

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.209-218
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free $Ca^{2+}$ $[Ca^{2+}]_i$ levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous $Ca^{2+}$-activated $Cl^-$ channel (CaCC) activity of Xenopus oocytes through mobilization of $[Ca^{2+}]_i$. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The $ED_{50}$ was $1.4{\pm}1.4$, $4.5{\pm}5.9$, and $3.9{\pm}1.1$ mg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.

Occurence Pattern of Yield and Missing Plant of Panax Ginseng in Lines under Field Condition (인삼포장의 행별수량과 결수발현양상)

  • 박훈;오승환;이종화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.2
    • /
    • pp.76-81
    • /
    • 1980
  • Root yield, number of missing and diseased plant in each line were investigated in various ginseng farms. Root yield per unit area was negatively correlated to missing percentage. Missing percentage showed significant positive correlation with diseased rate. Among lines yield was significantly different in most fields while missing rate was not, indicating that yield of each line is affected by present shading method but disease occurrence is not. Thus there are two ways of yield increase, shading improvement and disease control.

  • PDF

Changes in Effective Components of Ginseng by Puffing (팽화에 의한 인삼 유효성분의 변화)

  • Kim, Ji-Hye;Ahn, Soon-Cheol;Choi, Sung-Won;Hur, Nam-Youn;Kim, Byung-Yong;Baik, Moo-Yeol
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.188-193
    • /
    • 2008
  • This study was conducted to investigate the effect of moisture content and pressure on extraction yield, crude saponins and ginsenoside contents of puffed Korean ginseng. Puffed ginsengs showed relatively higher extraction yield ($50.0{\sim}62.1%$) and amounts of crude saponins ($19.6{\sim}48.8$ mg/g ginseng) than no-puffed ginseng ($37.6{\pm}0.8%$ and $11.0{\pm}1.0$ mg/g ginseng), respectively. The highest extraction yield and amounts of crude saponins were obtained in 8.0% moisture content sample puffed at 10 $kg_f/cm^2$. In HPLC analysis, amounts of measured major ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) decreased with increasing puffing pressure, yet contents of almost all major gin senosides were higher than control (no-puffed). On the other hand, ginsenoside Rg3 were produced after puffing suggesting that chemical structure of some ginsenosides might be altered during the puffing process. These results indicate that puffing can increase the extraction yield and crude saponin contents and it could influence the ginsenoside composition.

EFFECTS OF FIELD PRODUCTIVITY, VARIETY AND NITROGEN RATE ON THE YIELD, QUALITY AND PHYSICO-CHEMICAL CHARACTERISTICS OF BURLEY TOBACCO (버어리종 잎담배의 수량, 품질 및 이화학성에 미치는 포지비옥도, 품종 및 질소시용량의 영향)

  • Kim, Sang-Beom;Kim, Yong-Kyoo;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.91-101
    • /
    • 1990
  • A field experiment was conducted to find out the effects of field productivity, variety and nitrogen rate on the yield, quality, chemical constituents and physical properties of burley cured leaf in three field with different productivity(Degree of field productivity: A ; high, B ; medium, C : low) during successive two years(1988~89). The yield and quality were remarkably lowered when nitrogen fertilizer being applied much in low productive field. As compared with Burley 21, KB101 showed high yield, particularly the yield of KB101 in low productive field was relatively high. The effect of nitrogen rate on the yield was somewhat different according to field productivity and production year. When the nitrogen fertilizer being applied above 22.5kg/10a, the added nitrogen had no effect on the yield. Total nitrogen content of cured leaf grown in low productive field was high while total alkaloid was low, therefore total alkaloid/total nitrogen ratio was remarkably low. The lightness, red and yellow color of cured leaf grown in low productive field was remarkably low. As compared with Burley 21, the contents of total alkaloid and total nitrogen and shatter resistance index of cured leaf was somewhat low, while the filling power, lightness, red and yellow color were slightly high. Total nitrogen content of cured leaf was increased remarkably by nitrogen addition, but total alkaloid was not increased though the nitrogen fertilizer being applied above 22.5kg/10a. The filling power and shatter resistance index of cured leaf grown in high nitrogen plot, and the lightness and yellow color were low while the red color was relatively high. It comes into question that the visual quality being increased as well as increment of yield and nitrogenous compounds by nitrogen addition in high productive field. In low productive field, it is considerable that nitrogen addition for high yield should be prohibited because it causes the decrement of yield and quality, on the contrary.

  • PDF

Effects of Fertilizer on the Yield and Quality of Burley Tobacco (Nicotiana tabacum) (버어리종 담배의 시비량이 수량 및 품질에 미치는 영향)

  • Kim, Dae-Song;Han, Chul-Soo;Choo, Hong-Gu
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.3-7
    • /
    • 1983
  • Three levels of nitrogen, phosphate and potassium were applied to tobacco for the establishment of the optimum rate of the fertilizers for yield and quality. 1 . The rate increment of nitrogen and potassium increased tobacco growth, but phosphate were non - significant between rate. 2. The contents of total-nitrogen and total-alkaloid in the leaf were increased, with the increase of nitrogen rate while the effect of phosphate and potassium were negligible. 3. The yield and quality of the tobacco were increased with the increasing rate of nitrogen and potassium fertilizer but phosphate should little difference.

  • PDF