• Title/Summary/Keyword: ginseng roots

Search Result 608, Processing Time 0.052 seconds

The Effect of Benomyl Treatments on Ginsenosides and Arbuscular Mycorrhizal Symbiosis in Roots of Panax ginseng

  • Eo, Ju-Kyeong;Eom, Ahn-Heum
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.256-259
    • /
    • 2009
  • The effects of benomyl treatment on ginsenoside and arbuscular mycorrhizal (AM) symbiosis in the roots of Panax ginseng that were collected from two sites in Korea were investigated. The ginseng roots that were treated with benomyl showed different species compositions of AM fungi colonizing the ginseng roots, compared to untreated roots. In the analysis of ginsenoside, Rc was significantly higher in benomyl untreated roots than in benomyl treated roots. The results suggest that AM fungal species composition and ginsenosides in ginseng root could be influenced by the benomyl treatment.

Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

  • Park, Young-Hwan;Kim, Young-Chang;Park, Sang-Un;Lim, Hyoun-Sub;Kim, Joon-Bum;Cho, Byoung-Kwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.327-333
    • /
    • 2012
  • Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants.

THE STUDY ON TISSUE CULTURED WILD MOUNTAIN GINSENG(Panax Ginseng C.A. Meyer) ADVENTITIOUS ROOTS EXTRACT AS A COSMETIC INGREDIENT

  • Jung, Eun-Joo;Park, Jong-Wan;Kim, Joong-Hoi;Paek, Kee-Yoeup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.611-616
    • /
    • 2003
  • Korean ginseng(Panax Ginseng C.A. Meyer) known as a oriental miracle drug is an important medicinal plant. Ginseng has been used for geriatric, tonic, stomachic, and aphrodisiac treatments for thousands years. Also, it is an antibiotic and has therapeutic properties against stress and cancer. Ginseng is widely distributed all over the world. Among them, Korean mountain ginseng has the most valuable effect on pharmaceuticals. The roots of mountain ginseng contained several kinds of ginsenosides that have many active functions for the human body. However, the study of mountain ginseng has a limit because the mountain ginseng is very expensive and rare. So, we artificially cultured mountain ginseng adventitious roots using the bioreactor culture system. We induced callus from original mountain ginseng, directly dug up in mountain and aged about one hundred ten years. Separated adventitious roots were precultured in 500ml conical flasks and then, transferred in 20L bioreactors. The adventitious roots of mountain ginseng were harvested after culturing for 40days, dried and then, extracted with several solvents. In this study, we investigated the whitening effect, anti-wrinkle effect and the safety of tissue cultured adventitious roots extract of mountain ginseng in order to identify the merit as a cosmetic ingredient. Particularly, extract of mountain ginseng adventitious roots showed whitening and anti-wrinkle effects. The inhibitory effect of this extract on the melanogenesis was examined using B-16 melanoma cell. When B-16 melanoma cells were cultured with adventitious root extract, there was a dramatically decrease in melanin contents of 8-16 melanoma cell. And we identified this extract inhibited Dopa auto-oxidation significantly. Also, when transformed mouse fibroblast L929 cells were treated with this extract, there was a significant increase in collagen synthesis. The results show significant inhibited melanization and wrinkle without inhibiting cell viability.

  • PDF

Induction and Culture of Hairy Roots from Ginseng(Panax ginseng C. A. Meyer) Roots Discs by Agrobacterium rhizogenes (Agrobacterium rhizogenes에 의한 인삼( Panax ginseng C. A. Meyer )근 조직에서의 Hairy Roots 유도 및 배양)

  • Hwang, Baik;Ko, Kyeong-Min
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.288-292
    • /
    • 1989
  • Induction and culture of hairy roots from ginseng(Panax ginseng C. A. Meyer) roots discs by A. rhizogenes strain $A_4$ were studied. After 6-12 weeks infected with A. rhizogenes tumor and hairy roots emerged from the root discs. The ratio of hairy root induction on root discs was higher in 5-year old than in 3, 4, and 6-year old ginseng. On treatment with IAA, IBA, 2, 4-D and tryptophan, hairy roots formation showed a significant increase at 15-30mg/1 tryptophan treated. Subsequently, hairy roots were cultured on hormone-free RCM medium(pH 4.5, sucrose 30g/1).

  • PDF

Morphology of Arbuscular Mycorrhizal Roots and Effects of Root Age and Soil Texture on the Mycorrhizal Infection in Panax ginseng C.A. Meyer

  • Lee, Kyung-Joon;Park, Hoon;Lee, In-Sik
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.149-156
    • /
    • 2004
  • The objectives of this study were to investigate the morphology of mycorrhizal roots, and the effects of root age and soil texture on the mycorrhizal infection in ginseng (Panax ginseng C. A. Meyer) growing in Korea. Ginseng roots at ages of two to six years were collected from fields in late June. Their infection by arbuscular mycorrhizal fungi(AMF) was studied by clearing the roots and staining fungal hyphae with trypan blue. Root infection varied greatly depending on the developmental stages of young roots. Young tertiary roots, in diameter of smaller than 0.8 mrn, formed during the current growing season had root hairs and were frequently and in some cases heavily infected by AMF. Hyphal coils and arbuscules were abundant, while vesicles were rarely observed. Older secondary or tertiary roots in diameter of bigger than 1.0 mm with fully differentiated primary xylem formed during the previous growing season had no root hairs, and were not infected at all. The rates of mycorrhizal infection in the young tertiary roots were not affected by the age of the ginseng plants, suggesting that fungal populations might have not much changed during the aging of the cultivated fields up to six years. The differences in the infection rates among the different ages of ginseng were caused by differences in the amount of young tertiary roots in the samples. Soil texture, either sandy loam or clay loam, did not affect the rate of root infection. There were large variations in the infection rates among the different farms and locations within a farm. It strongly suggested that infection rates of the ginseng roots by AMF would be influenced by the practice of the farmers, possibly by avoiding consecutive planting, introduction of new topsoil, and the ways of handling the soil before transplanting the ginseng, such as fumigation or sterilization that might have affected indigenous inoculum sources of the AMF.

Increase in the Contents of Ginsenosides in Raw Ginseng Roots in Response to Exposure to 450 and 470 nm Light from Light-Emitting Diodes

  • Park, Sang-Un;Ahn, Deok-Jong;Jeon, Hyeon-Jeong;Kwon, Tae-Ryong;Lim, Hyoun-Sub;Choi, Bo-Seong;Baek, Kwang-Hyun;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.198-204
    • /
    • 2012
  • An light-emitting diode (LED)-based light source was used as a monochromatic light source to determine the responses of raw ginseng roots (Panax ginseng Meyer) to specific emission spectra with respect to the production of ginsenosides. The ginsenoside content in the ginseng roots changed in response to the LED light treatments at $25^{\circ}C$ relative to the levels in the control roots that were treated in the dark or at $4^{\circ}C$ for 7 d. Ginseng roots were exposed to LEDs with four different peak emission wavelengths, 380, 450, 470, and 660 nm, in closed compartments. Compared with the control $4^{\circ}C$-treated roots, roots that were treated with 450 and 470 nm light showed a significantly increased production of ginsenosides (p<0.05), with increases of 64.9% and 74.1%, respectively. The contents of the ginsenosides $Rb_2$, Rc, and $Rg_1$ were significantly higher (p<0.05) in the 450 and 470 nm-treated root samples. The ratio of protopanaxadiol ginsenosides ($Rb_1$, $Rb_2$, Rc, and Rd) to protopanaxatriol ginsenosides ($Rb_1$, $Rb_2$, Re, and Rf) was significantly higher (p<0.05) in the 450 and 470 nm-treated root samples than in the control $4^{\circ}C$-treated roots. This is the first report that demonstrates the increase and conversion of ginsenosides in raw ginseng roots in response to exposure to LED light.

Effect of Shading on the Quality of Raw, Red and White Ginseng and the Contents of Some Minerals in Ginseng Roots (해가림 종류가 수삼, 홍삼 및 백삼의 품질과 무기물 함량에 미치는 영향)

  • 김영호;유연현
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 1990
  • The quality of raw, red and white ginseng and the contents of some minerals were examined using 6-year-old ginseng roots produced in different shades, thatch and polyethylene net (P..E.). The yield of first and second grade ginseng roots was higher in the thatch shade than in the P.E. shade. The smaller sizes of ginseng routs were probably due to loss of ginseng yield called by alternaria blight in the third and fourth years, and lower quality was dale to more rusty roots in the P.E. shading. For red ginseng. rates of heaven and earth grades were higher in the P.E. than thatch shade. producing red ginseng with less inside cavity Production of white ginseng was higher in the thatch shade than in the P.E. shade. showing a higher yield, better piece grade, lower inside crack and better quality index in the thatch. The contents of some minerals such as K, Ca, Mg and Mn of fine ginseng roots differed between the two shades, some of which had a significant correlation with the quality indices of white ginseng. Keywords Thatch shade, polyethylene shade, alternaria blight, rulsty root, quality of ginseng.

  • PDF

Determination of Ginsenosides Content in Korean Ginseng Seeds and Roots by High Performance Liquid Chromatography

  • Hu, Jiang Ning;Lee, Jeung-Hee;Shin, Jung-Ah;Choi, Jae-Eul;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.430-433
    • /
    • 2008
  • A high performance liquid chromatography (HPLC) method has been successfully developed to identify and quantify major ginsenosides in Korean ginseng seeds and roots. Using gradient elution of acetonitrile and water without buffer, the 6 major ginsenosides ($Rb_1,\;Rb_2$, Rc, Rd, Re, and $Rg_1$) were identified. Compared with ginseng roots, the amount of ginsenoside Re and Rd in ginseng seeds were significantly higher than those in ginseng roots (p<0.05). In ginseng seeds, the content of protopanaxtriol (PPT) was higher than that of protopanaxdiol (PPD) and the ratio of PPT and PPD was approximately 2.2 : 1. However, the content of PPT was lower than that of PPD in ginseng roots. It should be mentioned that both content of PPT and PPD in ginseng seeds were much higher than those in ginseng roots.

Comparison of Non-saponin Composition and Contents in Fresh Ginseng Roots Cultivated in Different Areas and at Various Ages (수삼의 지역별 연근별 인삼 비사포닌 성분 함량 비교)

  • Yang, Byung-Wook;Im, Byung-Ok;Ko, Sung-Kwon
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.215-219
    • /
    • 2006
  • This study was carried out to obtain the basic information for non-saponin contents that can be used to index fresh ginseng roots (Panax ginseng C. A. Meyer) cultivated in the Republic of Korea and China. Non-saponin components in fresh gingeng roots which were cultivated in various areas and ages in Korea were determined. Acidic polysaccharide, total polysaccharide, crude polyacetylene were quantitatively analyzed by using the method of spectrophotometric determination, while the total protein was analyzed by using Lowry method. The results show that there were no statistically significant differences for the average contents of four non-saponins among 4-years-old, 5-years-old, and 6-years-old fresh ginseng roots. Additionally, this study assessed the average contents of non-saponin components in 4-years-old fresh ginseng roots (Panax ginseng C. A. Meyer) which were cultivated in Korea and China. The result showed that the average contents of crude polyacetylene and acidic polysaccharide were statistically significant. Four-years-old fresh ginseng roots cultivated in Korea had the higher average contents of crude polyacetylene and acidic polysaccharide than those cultivated in China. However the average contents of total polysaccharide and total protein had no statistically significant difference.

A Study on the Effect of Mountain Ginseng Adventitious Roots Extract (산삼부정근 추출물의 효능${\cdot}$효과에 관한 연구)

  • Yoo Yung-Geun;Joung Min-Seok;Lee Youn-Hee;Choi Jong-Wan;Kim Joong-Hoi;Paek Kee-Yoeup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.377-383
    • /
    • 2004
  • This study reviewed the application of an extract from mountain ginseng adventitious roots which had been grown through tissue culture as a cosmetic ingredient. The mountain ginseng adventitious roots were derived from mountain ginseng callus that was induced from mountain ginseng root whose origin is estimated to date back about one hundred years ago. The adventitious roots were separated from callus and grown in a 20 L bioreactor. In order to proliferate the adventitious roots, they were cultured for 5 weeks in bioreactor. Then the harvested mountain ginseng adventitious roots were dried and extracted. For verifying skin whitening effect of an extract from the tissue-cultured mountain ginseng adventitious roots in vivo, we performed the clinical test of it. The research showed the significant skin whitening effect of a mountain ginseng adventitious roots extract and the statistical analysis showed a significant difference (p<0.0001) between sample ($2\%$ mountain ginseng adventitious roots extract) and placebo. But, some saponins showed below $10\%$ inhibitory effect of tyrosinase and melanin synthesis in B-16 melanoma. The extracts of red ginseng and ginseng which were the same concentration as the tissue-cultured mountain ginseng adventitious roots extract's showed little inhibitory effect of tyrosinase and melanin synthesis in B-16 melanoma. In DPPH test, Anti-hydroxyl radical activity of $0.5\%$ the tissue-cultured mountain ginseng adventitious roots extract was $86\%.$.