• Title/Summary/Keyword: giant miscanthus

Search Result 7, Processing Time 0.023 seconds

Change in Soil Properties after Planting Giant Miscanthus (거대억새 단지 조성에 따른 토양 특성 변화)

  • Kang, Ku;Hong, Seong-Gu;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.69-75
    • /
    • 2013
  • Miscanthus has received wide attention as an option for biomass production in Korea, recently. New strain of giant miscanthus has been developed and was planted in two large trial sites (184 ha) in the lower reaches of the Geum River. To evaluate the susceptibility of the giant miscanthus as an bioenergy crop for the future, we investigated the influence of the giant miscanthus on the soil properties. The particle size, CEC, pH, EC, T-N, T-P, heavy metal total concentration, and heavy metal fractions of soil samples collected from abandoned field, 1 year old giant miscanthus field (1st Year GM), and 2 year old giant miscanthus field (2nd Year GM) at different depths of 0~15, 15~30, and 30~45 cm in April and August were analyzed. Results showed that the CEC and pH of the soil of the giant miscanthus field were lower than those of the soil of abandoned field. The EC of 2nd GM was lower than that of abandoned field, indicating that the giant miscanthus may facilitate soil desalination process. The organic and sulfide fraction and residual fraction of heavy metals in the giant miscanthus field was higher than in abandoned field, due to the low pH of the giant miscanthus field and the excretion of phytosiderophores by rhizome of the giant miscanthus. This study showed that the giant miscanthus can influence on the soil properties and further study for long term is needed to elucidate the interaction between the soil and the giant miscanthus.

Monitoring Biota in Giant Miscanthus Fields (거대억새 재배단지 조성에 따른 생물상 모니터링)

  • Kang, Ku;Hong, Seong-Gu;Ji, Kwang-Jae;Choi, June-Yeol;Lee, Hyo-HyeMi;Kim, Han-Joong;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • The cultivation of biomass crops is now global demand for decreasing emissions of carbon dioxide ($CO_2$) from fossil fuel. Miscanthus species have been studied as a suitable crop for biomass production, due to its characteristics of fast growth and high biomass. In Korea, Miscanthus species have gained wide attention as an option for biomass production alternative to fossil fuels, recently. New strain of giant Miscanthus has been developed and two large trial sites for the giant Miscanthus production were built in the lower reaches of the Geum River. To evaluate the ecological influence of the giant Miscanthus as an bioenergy crop for the future, we investigated the impact of the construction of the giant Miscanthus production fields on the biota and also compared it with biota in paddy fields near the study sites. The biota including plants, amphibians, reptiles, mammals, avifauna, insects, and bugs was investigated. The plant diversity of the giant Miscanthus production fields was poorer than the paddy fields because the high height of the giant Miscanthus might hinder the growth of other plants. However, the giant Miscanthus production fields serves habitat to animals, leading to rich diversity of animals including avifauna, insects, and bugs. The rich diversity of the animals in the giant Miscanthus production fields coincides with the fact that the giant Miscanthus was grown without any pesticide, herbicide, and fertilizer. This study showed that the giant Miscanthus can influence on biota and further long term study is needed to elucidate the interaction between the diversity of biota and the giant Miscanthus.

Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus) (거대억새(Miscanthus sacchariflorus)의 혐기소화를 위한 메탄생산 퍼텐셜 분석)

  • Yoo, Jung-Suk;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • BACKGROUND: This study was carried out to assess a biochemical methane potential of giant miscanthus (Miscanthus sacchariflorus) which was a promising candidate energy crop due to a high biomass productivity, in order to utilize as a feedstock for the biogas production. METHODSANDRESULTS: Giant miscanthus was sampled the elapsing drying time of 6 months after harvesting. TS (Total Solid) and VS (Volatile Solid) contents were 94.7 and 90.8%. And CP (Crude Protein), EE (Ether Extracts), and CF (Crude Fiber) contents of giant miscanthus were 1.4, 0.46, and 46.12%, respectively. In the organic composition of giant miscanthus, the NDF (Neutral Detergent Fiber) representing cellulose, lignin, and hemicellulose contents showed 86.88%, and the ADF (Acid Detergent Fiber) representing cellulose and lignin contents was 62.91%. Elemental composition of giant miscanthus showed 47.75%, 6.44%, 41.00%, and 0.28% for C, H, O, and N, respectively, and then, theoretical methane potential was obtained to $0.502Nm^3kg^{-1}-VS_{added}$. Biochemical methane potential was assessed as the range of $0.154{\sim}0.241Nm^3kg^{-1}-VS_{added}$ resulting the lower organic biodegradability of 30.7~48.0%. CONCLUSION: Therefore the development of pretreatment technology of the giant miscanthus was needed for the improvement of anaerobic digestability.

Using Eeclaimed Land for Potato Cultivation in Saemangeum, South Korea: Determining the Optimal Nitrogen Fertilization Rate with the Giant Miscanthus used as a Source of Soil Organic Matter (새만금간척지에서 거대억새 투입 후 분해 특성 및 감자 재배를 위한 적정 질소시비수준 평가)

  • Yang-Yeol, Oh;Kang-Ho, Jeong;Su-Hwan, Lee;Kwang-Seung, Lee;Bo-Seong, Seo;Kil-Yong, Kim
    • Journal of Environmental Science International
    • /
    • v.31 no.11
    • /
    • pp.911-922
    • /
    • 2022
  • To restore reclaimed land, it needs to be supplemented with organic matter; this is especially true for Korea, where organic matter constitutes only one-tenth of conventional agricultural soils. The giant Miscanthus, a perennial grass known for its extensive biomass, shows signs of being an excellent source of organic matter for restoring reclaimed land. Therefore, the objectives of this study were to (i) evaluate the feasibility of using the giant miscanthus as an organic resource within the context of re-using reclaimed land for agricultural purposes (i.e., potato cultivation), and (ii) determine the optimum fertilization rate for the potatoes while the giant miscanthus is being used as an organic resource. Our results show that after 180 days, giant miscanthus lost 23-47% of its original dry weight, with the extent of the loss dependent on soil salinity. Nutrient concentrations (Mg2+, Na+) continued to increase until the end of the study period. In contrast, potassium (K+) and the ratio of carbon to nitrogen (C/N) decreased until the end of the study period. Specifically, after 180 days, low salinity topsoil treatments had the lowest C/N ratio. In the first year, 150 % of standard N rates were required for the potatoes to achieve maximum productivity; however in the 2nd year, standard rates were sufficient to achieve maximum productivity. Overall, this implies that even though the application of giant miscanthus did eventually improve soil quality, increasing crop yields, N fertilization is still necessary for the best outcomes.

Required Mowing Power and Bale Density of Miscanthus × Giganteus for Field Biomass Harvesting using Different Methods

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.253-260
    • /
    • 2014
  • Purpose: This study investigated the harvesting properties of the giant miscanthus (Miscanthus ${\times}$ giganteus) to measure the required mowing power for different stem conditioning methods in order to shorten the drying time after mowing and the bale density so that the crop can be used as biomass in the winter season. Methods: The required mowing power and bale density were measured using a power measurement device, three different mower-conditioners, and a mid-sized round baler under different working speeds and conditioning methods. Results: For the various mower-conditioners, the average stem length from mowing was 0.86-0.91 m, and the available working speed was 1.6 m/s. The steel roller-type mower-conditioner showed better stem conditioning but could not mow over a working speed of 1.6 m/s. The required average power of the mower-conditioners varied from 23.8 kW for the steel roller-type rotary disk mower-conditioner with a working width of 2.4 m to 37.2 kW for the flail-type rotary disk mower-conditioner with a working width of 3.2 m at a working speed of 1.6 m/s. The bale densities were $155.8-172.2kg/m^3$. The highest bale density was measured for stems with no conditioning and a moisture content of 11.3% (d.b.) mowed by the rotary disk mower. The bale density was affected by the mowing method because of the low moisture content of the miscanthus stems. Conclusions: In terms of the working performance and conditioning statue, the steel roller-type mower-conditioner is a better choice at a working width of 2.4 m, while the flail finger-type mower-conditioner is better at a working width of 3.2 m. The type of mower-conditioner used for giant miscanthus harvesting should be determined by considering the harvest area, workable period, and working performance of a mower-conditioner and baler during the winter.

Study on Pretreatment of Giant Miscanthus Using Ionic Liquid and Structural Change of Lignin (이온성 액체에 의한 거대억새 전처리 특성 및 리그닌의 구조적 변화 관찰)

  • Park, Shin Young;Hwang, Hyewon;Jang, SooKyeong;Choi, In Gyu;Choi, JoonWeon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.344-354
    • /
    • 2015
  • To investigate the effects of ionic liquid pretreatment on biomass, giant miscanthus was treated with 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) and 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) at three temperature conditions ($90^{\circ}C$, $110^{\circ}C$, and $130^{\circ}C$). As temperature condition increased, yield of the cellulose-rich product (CP) was reduced from 87.2% to 67.6%, while yield of the ionic liquid lignin (ILL) increased from 2.2% to 9.9%. Compared to the ILL, CP had lower carbon contents and higher oxygen contents. Enzymatic hydrolysis of CPs showed that conversion ratio of CP treated with [Emim][OAc] at $110^{\circ}C$ was 56.7%, the highest digestibility. Thermogravimetric analysis indicated that the maximum degradation rate decreased as temperature condition increased. In addition, maximum degradation temperature of ILL treated with [Emim][OAc] ranged from 274 to $279^{\circ}C$ which was lower than that of ILL treated with [Bmim][OAc]. Analytical date for ${\beta}$-O-4 linkage frequency in the ILL revealed that ${\beta}$-O-4 linkage frequency in the ILL decreased as the temperature rose. Furthermore, the highest S/G ratio of the ILL was determined to ca. 1.2 obtained from [Bmim][OAc] treatment at $110^{\circ}C$.

Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors

  • Han, Joah;Lee, Jin Hyung;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • In the study, herbaceous biomass waste including giant miscanthus, corn stalk, and wheat stalk were used to prepare commercially valuable activated carbons by KOH activation. The waste biomass predominantly consists of cellulose/hemicellulose and lignin, in which decomposition after carbonization and activation contributed to commercially valuable specific surface areas (>$2000m^2/g$) and specific capacitances (>120 F/g) that exceeded those of commercial activated carbon. The significant electrochemical performance of the herbaceous biomass-derived activated carbons indicated the feasibility of utilizing waste biomass to fabricate energy storage materials. Furthermore, with respect to both economic and environmental perspectives, it is advantageous to obtain activated carbon from herbaceous biomass waste given the ease of handling biomass and the low production cost of activated carbon.