DOI QR코드

DOI QR Code

Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors

  • Han, Joah (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Jin Hyung (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology) ;
  • Roh, Kwang Chul (Center of Energy Storage Materials, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2018.03.30
  • Accepted : 2018.04.13
  • Published : 2018.06.30

Abstract

In the study, herbaceous biomass waste including giant miscanthus, corn stalk, and wheat stalk were used to prepare commercially valuable activated carbons by KOH activation. The waste biomass predominantly consists of cellulose/hemicellulose and lignin, in which decomposition after carbonization and activation contributed to commercially valuable specific surface areas (>$2000m^2/g$) and specific capacitances (>120 F/g) that exceeded those of commercial activated carbon. The significant electrochemical performance of the herbaceous biomass-derived activated carbons indicated the feasibility of utilizing waste biomass to fabricate energy storage materials. Furthermore, with respect to both economic and environmental perspectives, it is advantageous to obtain activated carbon from herbaceous biomass waste given the ease of handling biomass and the low production cost of activated carbon.

Keywords

References

  1. Chen. L, et al., J. Mater. Chem. A, 2014, 2(25), 9684-9690. https://doi.org/10.1039/C4TA00501E
  2. Basta. A, Fierro. V, El-Saied. H, Celzard. A, Bioresour. technol, 2009, 100(17), 3941-3947. https://doi.org/10.1016/j.biortech.2009.02.028
  3. Wang. R, Wang. P, Yan. X, Lang. J, Peng. C, Xue. Q, ACS appl. mater. Interfaces, 2012, 4(11), 5800-5806. https://doi.org/10.1021/am302077c
  4. Daifullah. A, Yakout. S, Elreefy. S, J. Hazard. Mater, 2007, 147(1-2), 633-643. https://doi.org/10.1016/j.jhazmat.2007.01.062
  5. Hong. J, Hwang. B, Lee. J, Kim. K, J. Electrochem. Sci. Technol, 2017, 8(1), 1-6. https://doi.org/10.5229/JECST.2016.8.1.1
  6. Kim. J, Chun. J, Kim. S-G, Ahn. H, Roh, K. C, J. Electrochem. Sci. Technol, 2017, 8(4), 338-343. https://doi.org/10.5229/JECST.2017.8.4.338
  7. Yoo. J, Kim. Y, Lee. C-W, Yoon. H, Yoo. S, Jeong. H, J. Electrochem. Sci. Technol, 2017, 8(3), 250-256. https://doi.org/10.5229/JECST.2017.8.3.250
  8. Kim. D, Rhee. K, Park. S, J. Alloys Compd, 2012, 530, 6-10. https://doi.org/10.1016/j.jallcom.2012.02.157
  9. Zhang. S, Li. Y, Pan. N, J. Power Sources, 2012, 206, 476-482. https://doi.org/10.1016/j.jpowsour.2012.01.124
  10. Zou. J., et al., Bioresour. Technol, 2013, 142, 209-217. https://doi.org/10.1016/j.biortech.2013.04.064
  11. Saka. C, J. Anal. Appl. Pyrolysis, 2012, 95, 21-24. https://doi.org/10.1016/j.jaap.2011.12.020
  12. Kim. S-I, et al, Microporous and Mesoporous Materials, 2006, 96(1), 191-196. https://doi.org/10.1016/j.micromeso.2006.06.035
  13. Bo. Li, Hiroshi. S, Hailong. J, Xinbo. Z, Qiang. X, Carbon, 2010, 48, 456-463. https://doi.org/10.1016/j.carbon.2009.09.061
  14. Chmiola. J, Yushin. G, Gogotsi. Y, Portet. C, Simon. P, Taberna. P. L, Science, 2006, 313(5794), 1760-1763. https://doi.org/10.1126/science.1132195
  15. Fan. Z, Yan. J, Wei. T, Zhi. L, Ning. G, Li. T, Wei. F, Adv. Funct. Mater, 2011, 21(12), 2366-2375. https://doi.org/10.1002/adfm.201100058
  16. Largeot. C, Portet. C, Chmiola,. J, Taberna. P-L, Gogotsi. Y, Simon. P, J. Am. Chem. Soc, 2008, 130(9), 2730-2731. https://doi.org/10.1021/ja7106178
  17. Rodriguez-Martinez, L. M, Omar. N., Emerging Nanotechnologies in Rechargeable Energy Storage Systems. Elsevier Science, 2017.