DOI QR코드

DOI QR Code

Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus)

거대억새(Miscanthus sacchariflorus)의 혐기소화를 위한 메탄생산 퍼텐셜 분석

  • Yoo, Jung-Suk (Biogas Research Center, Hankyong National University) ;
  • Kim, Chang-Hyun (Department of Animal Life & Environmental Science, College of Agriculture and Life Science, Hankyong National University) ;
  • Yoon, Young-Man (Biogas Research Center, Hankyong National University)
  • 유정숙 (한경대학교 바이오가스연구센터) ;
  • 김창현 (한경대학교 농업생명과학대학 동물생명환경과학과) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • Received : 2017.02.05
  • Accepted : 2017.03.14
  • Published : 2017.03.31

Abstract

BACKGROUND: This study was carried out to assess a biochemical methane potential of giant miscanthus (Miscanthus sacchariflorus) which was a promising candidate energy crop due to a high biomass productivity, in order to utilize as a feedstock for the biogas production. METHODSANDRESULTS: Giant miscanthus was sampled the elapsing drying time of 6 months after harvesting. TS (Total Solid) and VS (Volatile Solid) contents were 94.7 and 90.8%. And CP (Crude Protein), EE (Ether Extracts), and CF (Crude Fiber) contents of giant miscanthus were 1.4, 0.46, and 46.12%, respectively. In the organic composition of giant miscanthus, the NDF (Neutral Detergent Fiber) representing cellulose, lignin, and hemicellulose contents showed 86.88%, and the ADF (Acid Detergent Fiber) representing cellulose and lignin contents was 62.91%. Elemental composition of giant miscanthus showed 47.75%, 6.44%, 41.00%, and 0.28% for C, H, O, and N, respectively, and then, theoretical methane potential was obtained to $0.502Nm^3kg^{-1}-VS_{added}$. Biochemical methane potential was assessed as the range of $0.154{\sim}0.241Nm^3kg^{-1}-VS_{added}$ resulting the lower organic biodegradability of 30.7~48.0%. CONCLUSION: Therefore the development of pretreatment technology of the giant miscanthus was needed for the improvement of anaerobic digestability.

Keywords

Acknowledgement

Supported by : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)

References

  1. Alaru, M., Olt, J., Kukk, L., Luna-delRisco, M., Lauk, R., & Noormets, M. (2011). Methane yield of different energy crops grown in Estonian conditions. Agronomy Research Biosystem Engineering, Special Issue 1, 13-22.
  2. Beuvink, J. M. W., Spoelstra, S. F., & Hogendorp, R. J. (1992). An automated method for measuring time-c ourse of gas production of feed-stuffs incubated with buffered rumen fluid. Netherlands Journal of Agricultural Science, 40, 401-401.
  3. Bonin, C. L., Heaton, E. A., & Barb, J. (2014). Miscanthus sacchariflorus-biofuel parent or new weed?. GCB Bioenergy, 6(6), 629-636. https://doi.org/10.1111/gcbb.12098
  4. Boyle, W. C. (1976). Energy recovery from sanitary landfills-a review. Microbial Energy Conversion (eds. Schlegel, H. G., and Barnea, J.). pp. 119-138. Pergamon Press, Oxford, UK.
  5. Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: a fast‐growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6(5), 580-598. https://doi.org/10.1002/bbb.1353
  6. Chandra, R., Takeuchi, H., Hasegawa, T., & Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43(1), 273-282. https://doi.org/10.1016/j.energy.2012.04.029
  7. Cho, S. B., Mbiriri, D. T., Oh, S. J., Lee, A., Yang, J. H., Ryu, C. H., Park, C. M., Moon, Y. H., Chae, J. I., & Choi, N. J. (2012). Effect of mature Miscanthus sacchariflorus var. No. 1 on in vitro rumen fermentation characteristics and its dry matter digestibility. Journal of The Korean Society of Grassland and Forage Science, 32(2), 165-174. https://doi.org/10.5333/KGFS.2012.32.2.165
  8. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E., & Peck, M. W. (1993). Biochemical methane potential of biomass and waste feedstocks. Biomass and bioenergy, 5(1), 95-111. https://doi.org/10.1016/0961-9534(93)90010-2
  9. Cortes, A. M., & Bridgwater, A. V. (2015). Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. Fuel Processing Technology, 138-193.
  10. Di Girolamo, G., Grigatti, M., Barbanti, L., & Angelidaki, I. (2013). Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresource technology, 147-159.
  11. Frigon, J. C., Mehta, P., & Guiot, S. R. (2012). Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy, 36, 1-11. https://doi.org/10.1016/j.biombioe.2011.02.013
  12. Gaunt, J. L., & Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science &Technology, 42(11), 4152-4158. https://doi.org/10.1021/es071361i
  13. Kazimierowicz, J., & Dzienis, L. (2015). Giant Miscanthus as a substrate for biogas production. Journal of Ecological Engineering, 16(4), 139-142.
  14. Kim, S. H., Kim, H., Oh, S. Y., Kim, C. H., & Yoon, Y. M. (2012). Effect of substrate to inoculum ratio on biochemical methane potential in the thermal pretreatment of piggery sludge. Korean Journal of Soil Science and Fertilizer, 45(4), 532-539. https://doi.org/10.7745/KJSSF.2012.45.4.532
  15. Lay, J. J., Li, Y. Y., & Noike, T. (1998). Developments of bacterial population and methanogenic activity in a laboratory-scale landfill bioreactor. Water research, 32(12), 3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  16. Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., & Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 19(4), 209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  17. Menardo, S., Airoldi, G., &Balsari, P. (2012). The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresource technology, 104, 708-714. https://doi.org/10.1016/j.biortech.2011.10.061
  18. Moon, Y. H., Koo, B. C., Seo, S. J., Park, S. T., Cha, Y. R., Ahn, S. H., Kim, C. W., & Lee, Y. H. (2014). Miscanthus plant named Geodae-Uksae 1. Korean Patent 10-1444203-0000.
  19. Moon, Y. H., Koo, B. C., Park, S. T., Cha, Y.R., Ahn, S. H., & Seo, S. J. (2013). Method for mass production of miscanthus seedling. Korean Patent 10-1093016-0000.
  20. Moon, Y. H., Koo, B. C., Choi, Y. H., Ahn, S. H., Bark, S. T., Cha, Y. L., An, G. H., Kim, K., & Suh, S. J. (2010). Development of "Miscanthus" the promising bioenergy crop. Korean Journal of Weed Science, 30(4), 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  21. Oh, S. J., Song, W. S., Kim, M. S., Choi, S. L., Lee, S. R., Kim, E. S., Kim, Y. S., & Choi, N. J. (2013). Effect of different parts and growing stages of Miscanthus sacchariflorus as a non-food resource that does not contribute towards climate change on metabolic availability in ruminants. Korean Journal of Organic Agriculture, 21(3), 437-450. https://doi.org/10.11625/KJOA.2013.21.3.437
  22. Park, C. H., Kim, Y. G., Kim, K. H., Alam, I., Lee, H. J., Sharmin, S. A., Lee, K. W., & Lee, B. H. (2009). Effect of plant growth regulators on callus induction and plant regeneration from mature seed culture of Miscanthus sinensis. Journal of The Korean Society of Grassland and Forage Science, 29(4), 291-298. https://doi.org/10.5333/KGFS.2009.29.4.291
  23. Park, C. H., Kim, Y. G., Kim, K. H., Alam, I., Lee, H. J., Sharmin, S. A., Lee, K. W., & Lee, B. H. (2009). Effect of plant growth regulators on callus induction and plant regeneration from mature seed culture of Miscanthus sinensis. Journal of The Korean Society of Grassland and Forage Science, 29(4), 291-298. https://doi.org/10.5333/KGFS.2009.29.4.291
  24. Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1), 58-73. https://doi.org/10.1002/bbb.48
  25. Raffelt, K., Henrich, E., Koegel, A., Stahl, R., Steinhardt, J., & Weirich, F. (2006). The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Applied biochemistry and biotechnology, 129(1-3), 153-164. https://doi.org/10.1385/ABAB:129:1:153
  26. Raposo, F., Borja, R., Rincon, B., &Jimenez, A. M. (2008). Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass and Bioenergy, 32(12), 1235-1244. https://doi.org/10.1016/j.biombioe.2008.02.019
  27. Siedlecki, M., De Jong, W., & Verkooijen, A. H. (2011). Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels a review. - Energies, 4(3), 389-434. https://doi.org/10.3390/en4030389
  28. Sorensen, A. H., Winther-Nielsen, M., &Ahring, B. K. (1991). Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Applied microbiology and biotechnology, 34(6), 823-827. https://doi.org/10.1007/BF00169358
  29. Speller, C. S. (1993). The potential for growing biomass crops for fuel on surplus land in the UK. Outlook on Agriculture, 22(1), 23-29. https://doi.org/10.1177/003072709302200105
  30. Uellendahl, H., Wang, G., Moller, H. B., Jorgensen, U., Skiadas, I. V., Gavala, H. N., &Ahring, B. K. (2008). Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water science and technology, 58(9), 1841-1847. https://doi.org/10.2166/wst.2008.504
  31. Van Soest, P. J. & Robertson, J. B. (1985). Analysis of forage and fibrous feeds. A laboratory manual for Animal Science No. 613, Department of Animal science, Cornell University, Ithaca, New York.
  32. Willems, A., Amat-Marco, M., &Collins, M. D. (1996). Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. International Journal of Systematic and Evolutionary Microbiology, 46(1), 195-199.
  33. Xie, S., Frost, J. P., Lawlor, P. G., Wu, G., &Zhan, X. (2011). Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresource technology, 102(19), 8748-8755. https://doi.org/10.1016/j.biortech.2011.07.078
  34. Zhao, X., Cheng, K., &Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied microbiology and biotechnology, 82(5), 815. https://doi.org/10.1007/s00253-009-1883-1
  35. Zheng, M., Li, X., Li, L., Yang, X., & He, Y. (2009). Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresource Technology, 100(21), 5140-5145. https://doi.org/10.1016/j.biortech.2009.05.045