• 제목/요약/키워드: germ cells

검색결과 490건 처리시간 0.025초

Current Progress and Prospects of Reprogramming Factors - Stem Cells vs Germ Cells - (줄기세포와 생식세포에서 리프로그래밍 인자에 대한 최근 연구 동향과 전망)

  • Seo, You-Mi;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • 제14권2호
    • /
    • pp.43-50
    • /
    • 2010
  • Recently induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of several transcription factors (reprogramming factors) using technology of somatic cell reprogramming. iPS cells are able to selfrenew and differentiate into all type of cells in the body similarly to embryonic stem cells. Because iPS cells have advantages that can avoid immune rejection after transplantation and ethical issues unlike embryonic stem cells, research on iPS has made significant progress since the first report by Yamanaka in 2006. Nevertheless of many advantages of iPS, safer methods to introduce reprogramming factors into somatic cells must be developed due to safety concerns regarding viral vectors, and safer reprogramming factors to substitute the oncogenes should be evaluated for clinical application of iPS. Here we discuss the recent progress in reprogramming factors in embryonic stem cells, oocytes, and embryos, and discuss further research for finding new, more reliable and safer reprogramming factors.

Sex Differentiation of the Black Sea Bream, Acanthopagrus schlegeli (Bleeker) (감성돔, Acanthopagrus schlegeli (Bleeker)의 성분화)

  • Lee, Young-Don;Kang, Beob-Se;Lee, Jung-Jae
    • Korean Journal of Ichthyology
    • /
    • 제6권2호
    • /
    • pp.237-243
    • /
    • 1994
  • This work was conducted to study sex differentiation in the black sea bream, Acanthopagrus schlegeli (Bleeker), using a histological method for the appearance of primordial germ cell, formation of primitive gonads, differentiation of female and male from newly hatched larva to the ovotestis stage of fish. The 3~4 primordial germ cells of $6.8{\sim}7.2\;{\mu}m$ in size, which were buried under fibrous mesenchymal tissue between gut duct and notochord of pre-larva with a total length (T.L.) of 2.4 mm at 3 days after hatching. The proto-gonial cells were located in the epithelium of the coelom attached with pigment cells of juvenile with 6.4 mm in T.L. at 21 days after hatching. In juvenile of 20.8 mm in T.L. at 59 days after hatching, the proto-gonial cells were migrated to the retro-peritoneum through the lineshaped primitive gonad composed of fibrous mesenchymal tissue. In juvenile of 7.8 em in T.L. at 186 days after hatching, the mitotic division of proto-gonial cell appeared in the lineshaped primitive gonad having many eosinophilic granule cells and abundant fibrous connective tissue. In juvenile of 9.5 em in T.L. at 254 days after hatching, the gonad was occupied by abundant fibrous connective tissue, bundles of spermatocyte and spermatid. In juvenile of 10.5 cm in T.L. at 13 months after hatching, the gonad was divided into cortical layer and medullary layer. The former was composed of bundles of a few spermatocytes and proto-gonial cells, the latter was filled with the fibrous mesenchymal tissue and a few proto-gonial cells. In juvenile of 14.7 em in T.L. at 16 months after hatching, the gonad was separated into ovarian part and testicular part by the fibrous connective tissue. The ovarian part is consisted of ovarian cavity and oocytes of perinucleolus stage. The testicular part was occupied by spermatogonia in the cyst.

  • PDF

Germ Cell Differentiations during Oogenesis and Reproductive Cycle in Female Jicon Scallop, Chlamys farreri on the West Coast of Korea (한국 서해산 암컷 비단가리비, Chlamys farreri의 난형성과정 중 생식세포 분화 및 생식주기)

  • Park, Ki-Yeol;Lee, Ki-Young
    • Development and Reproduction
    • /
    • 제12권2호
    • /
    • pp.195-202
    • /
    • 2008
  • The gonadosomatic index, germ cell differentiation, and the ovarian cycle in female jicon scallop, Chlamys farreri were studied by histologic and cytologic observations. In the early vitellogenic oocyte, the Golgi complex, mitochondria and rough endoplasmic reticulum were involved in the formation of lipid droplets. In the late vitellogenic oocyte, exogenous substances, namely, glycogen particles and lipid granular substances appeared in the germinal epithelium passed into the ooplasm through the microvilli of the envelope. Yolk granules and multivesicular bodies were involved in the formation of proteinecious yolk granules in the late vitellogenic oocyte. Vitellogenesis occurrs by endogenous autosynthesis and exogenous heterosynthesis. The auxiliary cells function as nutritive cells in the formation and development of the previtellogenic and early vitellogenic oocytes in their earlr stages. Monthly changes in the gonadosomatic index were closely associated with ovarian developmental phases. The reproductive cycle of this species can be classified into five stages: early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to December). Spawning occurred from June to August, and the major spawning season was from July to August when the sea water was at high temperature.

  • PDF

Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation

  • Koh, Eun Mi;Lee, Eun Kyeong;Song, Chi Hun;Song, Jeongah;Chung, Hae Young;Chae, Chang Hoon;Jung, Kyung Jin
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.333-341
    • /
    • 2018
  • Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B $(NF-{\kappa}B)$ activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote $NF-{\kappa}B$ activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and $NF-{\kappa}B$ activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with $NF-{\kappa}B$ activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

The Effect of Modified Cryopreservation Method on Viability of Frozen-thawed Primordial Germ Cell on the Korean Native Chicken (Ogye) (한국재래닭 (오계) 원시생식세포에 있어 동결방법의 개선이 융해 후 생존율에 미치는 영향)

  • Kim, Hyun;Kim, Dong Hun;Han, Jae Yong;Choi, Sung Bok;Ko, Yeoung-Gyu;Do, Yoon Jung;Seong, Hwan-Hoo;Kim, Sung Woo
    • Journal of Animal Science and Technology
    • /
    • 제55권5호
    • /
    • pp.427-434
    • /
    • 2013
  • This study was conducted to establish methods for preserving chicken primordial germ cells (PGCs) for long-term storage in liquid nitrogen and for developmental engineering or preservation of species. The purpose of this study is to clarify the effects of fetal bovine serum (FBS) or chicken serum (CS) treatment on the viability of cryopreserved PGCs from Korean Native Chicken (Ogye). PGCs separated from a germinal gonad of an early embryo at day 5.5-6 (stage 28) were suspended in a freezing medium containing freezing and protective agents (dimethyl sulfoxide (DMSO), ethylene glycol (EG) and glycerol). The values from 0, 5, 10, and 15 % DMSO plus FBS treatment were 21.6, 30.36, 36.42, 50.39, and 48.36 %, respectively. The viability of PGCs after freeze-thawing was significantly higher for 10% EG plus FBS treatment than for 10% EG + FCS treatment (p<0.05) (64.36% vs. 50.66%). This study establishes a method for preserving chicken PGC that enables systematic storage and labeling of cryopreserved PGC in liquid nitrogen at a germplasm repository and an ease of entry into a database. In the future, the importance for this new technology is that poultry lines can be conserved while work is being conducted to improve the production of germline chimeras.

Gonadal Development and Sex Ratio of Artificial Seedlings of the Oblong Rockfish Sebastes oblongus (황점볼락 Sebastes oblongus 인공종묘의 생식소 발달과 성비)

  • Kwak Eun-Joo;Lee Kyung-Wo;Choi Nak-Hyun;Park Chung-Kug;Han Kyeong-Ho;Lee Won-Kyo;Yang Seok-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제39권3호
    • /
    • pp.297-302
    • /
    • 2006
  • We investigated gonadal development and sex ratio of artificial seedlings of the oblong rockfish Sebastes oblongus, based on samplings for 370 days just after parturition. The primordial germ cells and genital ridge appeared separately under the mesentery in the yolk-sac stage larva (total length: 7.10-7.77 mm) just after parturition. The primordial germ cells and genital ridge integrated to form primordial gonad in 5-day-old larvae (7.12-9.68 mm), and then proliferation of somatic cell and germ cell occurred in the gonad, which was maintained undifferentiated until 45-days after parturition (18.6-20.4 mm). The ovarian differentiation began in the larva of 50-days old (dab) after parturition (dap) (20.0-24.5 mm). The somatic tissues elongated from the both opposite end-sites of undifferentiated gonad were consequently fused and formed a complete ovarian cavity at 60-days old dap (25.5-32.0 mm). In 80-days old dap (37.3-47.2 mm), meiosis of oogonia occurred to be chromatin nucleolus stage oocyte. The perinucleolus stage oocytes appeared at in 130-days old dap (68.0-86.0 mm), and previtellogenic stage oocytes appeared in 370-days old dap (101.0-116.0 mm). Only female was observed in the artificially produced oblong rockfish in the present study. This result revealed the effect of higher temperature on the sex determination of the oblong rockfish..

Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain

  • Yu, Shu-Min;Yan, Xing-Rong;Chen, Dong-Mei;Cheng, Xiang;Dou, Zhong-Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.

A New Protocol for Effective Cryopreservation of Human Embryonic Stem Cells by a Minimum Volume Cooling Method

  • Kim, Eun-Young;Lee, Keum-Sil;Shin, Hyun-Ah;Park, Sae-Young;Yoon, Ji-Yeon;Kil, Kwang-Soo;Lee, Young-Jae;Kim, Nam-Hyung;Chung, Kil-Saeng
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.98-98
    • /
    • 2003
  • Recently, human embryonic stem (hES) cells have become very important resources for ES cell basic research, cell replacement therapy, and other medical applications; thus, efficient cryopreservation methods for these cells are needed. This study examined whether a newly developed minimum volume cooling (MVC) vitrification method, which was tested through cryopreservation of sensitive bovine oocytes, can be used for freezing hES cells. Feeder-free cultured hES cell (MB03) colonies were mechanically dissected into several small clumps following enzymatic treatment. We compared the freezing efficiency of a slow-cooling method using a cryo-module (0.4-0.6C/min, 20-30 clumps/vial) and MVC vitrification using a modified 0.5-ml French mini-straw designated as a MVC straw (>$20,000{\circ}C$/min, 10 clumps/straw) After thawing, in vitro survival of hES cell clumps was higher for MVC-vitrified cells (80.8%, 97/120) than for slow-cooled cells (38.2%, 39/102). Further, the proliferation rate of surviving MVC-vitrified cells was similar to that of control hES cells from 2 weeks after thawing. In addition, vitrified-thawed hES cells demonstrated a normal karyotype, were positively immunostained for surface marker antibodies (AP, SSEA-4 and TRA-1-60) and the Oct-4 antibody, and could differentiate into all three embryonic germ layer cells in vitro. This result demonstrates that hES cell clumps can be successfully cryopreserved by a newly developed MVC vitrification method without loss of human cell characteristics.

  • PDF

Modification of Efficient Vitrification Method by Using Open Pulled Straw (OPS) and EM Grid as Vehicles in Human Embryonic Stem Cell (인간 배아 줄기세포의 OPS와 Grid를 이용한 유리화 동결법의 효율성 비교)

  • 박규형;최성준;김희선;오선경;문신용;차광렬;정형민
    • Journal of Embryo Transfer
    • /
    • 제18권3호
    • /
    • pp.179-186
    • /
    • 2003
  • Human embryonic stem (hES) cell lines have been derived from human blastocysts and are expected to have far-reaching applications in regenerative medicine. The objective of this study is to improve freezing method with less cryo-injuries and best survival rates in hES cells by comparing various vitrification conditions. For the vitrifications, ES cells are exposed to the 4 different cryoprotectants, ethylene glycol (EG), 1,2-propanediol (PROH), EG with dime-thylsulfoxide (DMSO) and EG with PROH. We compared to types of vehicles, such as open pulled straw (OPS) or electron microscopic cooper grids (EM grids). Thawed hES cells were dipped into sequentially holding media with 0.2 M sucrose for 1 min, 0.1 M sucrose for 5 min and holding media for 5 min twice and plated onto a fresh feeder layer. Survival rates of vitrified hES cells were assessed by counting of undifferentiated colonies. It shows high survival rates of hES cells frozen with EG and DMSO (60.8%), or EG and PROH(65.8%) on EM grids better than those of OPS, compared to those frozen with EG alone (2.4%) or PROH alone (0%) alone. The hES cells vitrified with EM grid showed relatively constant colony forming efficiency and survival rates, compared to those of unverified hES cells. The vitrified hES cells retained the normal morphology, alkaline phosphates activity, and the expression of SSEA-3 and 4. Through RT-PCR analysis showed Oct-4 gene expression was down-regulated and embryonic germ layer markers were up-regulated in the vitrified hES cells during spontaneous differentiation. These results show that vitrification method by using EM grid supplemented with EG and PROH in hES cells may be most efficient at present to minimize cyto-toxicity and cellular damage derived by ice crystal formation and furthermore may be employed for clinical application.

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.