• Title/Summary/Keyword: geothermal technology

Search Result 223, Processing Time 0.029 seconds

Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications (고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향)

  • Won, J.I.;Jung, D.Y.;Cho, D.H.;Jang, H.G.;Park, K.S.;Kim, S.G.;Park, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.1-11
    • /
    • 2018
  • Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Trend Analysis of Latest Technology and Market for Commercialization of an Attached Photovoltaic-thermal Module (부착형 태양광열 모듈의 상용화를 위한 최신기술 및 시장 동향 분석)

  • Sangmu Bae;Hobyung Chae;Jinhwan Oh;Jeong-Heum Cho;SangHeon Jeong;Namjin Lyu;Yujin Nam
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.1
    • /
    • pp.14-25
    • /
    • 2023
  • In order to overcome the limitations of the individual renewable energy technologies such as photovoltaic (PV) and solar-thermal and effectively realize zero energy buildings, the photovoltaic-thermal (PVT) technology is being proposed. The current PVT module was simply combined with a PV panel and a solar-thermal collector. Therefore, it was difficult to commercialize because the PVT module is heavy and has no significant advantages compared to applying the individual technology. In this study, an attached PVT module is proposed for the commercialization and securing competitiveness in the renewable energy market. The attached PVT module enables on-site work with a simplified manufacturing process and can significantly reduce the supply price of the product. Moreover, it can be easily applied on already installed the PV panels. This study aims to commercialize the attached PVT module, the basic data was established as follows: (1) latest technology related to PVT module, (2) Global trends of the PVT module market. The possibility of commercialization of the attached PVT module was reviewed based on the results of the latest technology and market trends analysis. The supply price of the attached PVT module is lower than the existing products and it is considered that there is a high possibility of commercialization and introduction market with the advantage such as utilizing the existing PV industry and market. Moreover, the attached PVT module can be produced simultaneously the thermal and electrical energy, and it can be presented as an innovative alternative that can respond to the energy demand for residential sector.

Two-Dimensional Interpretation of Ear-Remote Reference Magnetotelluric Data for Geothermal Application (심부 지열자원 개발을 위한 원거리 기준점 MT 탐사자료의 2차원 역산 해석)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.145-155
    • /
    • 2005
  • A two-dimensional (2-D) interpretation of MT data has been performed for the purpose of fracture detection for geothermal development. Remote stations have been operated in Kyushu, Japan (480 km apart) as well as in Korea (60 km and 165 km apart in 2002 and 2003 data set, respectively). Apparent resistivity and phase curves calculated by remote processing with the Japan remote data showed enough quality for 2-D inversion for the whole frequency range. Remote reference processing with Korea remote reference data also showed quite good continuity in apparent resistivity and phase curves except some noisy frequency bands; around the power frequency, 60 Hz, and around the dead band $10^{-1}Hz\;Hz\;\~1\;Hz$, where the natural EM signal is known to be very weak. Even though the subsurface showed severe three-dimensional (3-D) characteristics in the survey area so that 2-D inversion by itself could not give enough information for deep geological structures, the 2-D inversion for the 5 survey lines showed several common features. The conductive semi-consolidate mudstone layer is dipping from north to south (about 500 m depth on the south and 200 m on the north most part of the survey area). The boundary between the low (L-2) and high (H-2) resistivity anomalies can be thought as a major fault with strike $N15^{\circ}E$, passing through the sites 206, 112 and 414. The shallow (< 1 km) conductive anomalies (L-4) seem to be fracture zones having strike E-W (at site 105) and $N60^{\circ}W$ (at site 434). And there exists a conductive layer in the western and west-southern part of the survey area in the depth below $2\~3\;km$, for which further investigation is to be needed.

Development of Technology on Water Thermal Energy Utilization of Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상) 열자원 활용 기술 개발)

  • Kim, Hyoung-Soo;Seo, Min-Woo;Jung, Woo-Sung;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Geothermal energy becomes to be one of the promising energy sources. In this study, technology using water thermal energy from riverbank filtration system(including alluvial and riverbed deposit) is reviewed and checked as an energy resources. The objects of this study are (1) long-term monitoring of alluvial and riverbed sites, (2) preliminary design of cooling and heating system at riverbank filtration facility, and (3) calculation of potential groundwater heat energy, including riverbank filtration system. Measuring data of alluvial and riverbank filtration show slight fluctuations comparing to temperature of atmospheric air which indicates that groundwater obtained from the riverbank filtration system have a sufficient potential as a source of cooling and heating energy.

  • PDF

Impurity variation in high purity silica mineral with different leaching methods (실리카광물의 산침출 정제방법에 따른 불순물 변화 연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Chung, Soo Bok;Chae, Young Bae
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.332-337
    • /
    • 2008
  • Purification of silica mineral was compared with various leaching methods such as shaking, stirring, ultrasonic with 2.5% HF/HCl solution. Among them, ultrasonic method showed a best leaching effect. From the leaching experiment, Na, K, Fe, Al exist as the major impurity elements. The removal rate of Al, Fe showed little difference with various leaching methods but Ca, Mn, Na were very different. Four kinds of silica mineral (>99% purity) after physical purification treatment were used for ultrasonic leaching experiment. Among them IN-Si had a highest impurity removal rate. Ca, Cr, K, Zn were removed above 80% using ultrasonic leaching method and Fe was also removed above 60%. But Al showed 10~60% removal rate with different samples.

Impurity analysis and acid leaching purification of silica minerals (실리카광물의 산침출 정제와 불순물 분석법 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Chae, Young-Bae
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.516-523
    • /
    • 2007
  • Purification of silica mineral has been investigated by acid leaching of pulverized silica. A series of studies has been carried out on the effect of leaching silica powder as a function of the leaching time at the constant temperature of $80^{\circ}C$ in oxalic acid, aqua regia, and two mixed acids of HF/HCl, $HF/HNO_3$. The impurities of silica and leachantes were measured by neutron activation analysis (NAA), inductively coupled plasma atomic emission spectrometry (ICP-AES), atomic absorption spectrometry, x-ray fluorescence (XRF) method and wet analysis (WA). Certain metals, such as sodium, calcium, iron, aluminium and titanium, have been found in concentrations of hundreds or even thousands of mg/kg. Comparison of purification processes of silica and analytical methods of impurities in the silica was conducted in this study.

Development of Round Trip Occurrence Simulator Considering Tooth Wear of Drill Bit (시추비트의 마모도를 고려한 라운드 트립 발생 예측 시뮬레이터 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.480-492
    • /
    • 2013
  • After the introduction of geothermal power generation technology based on engineering reservoir creation that can be applied on non-volcanic region, industrial need for studies on the efficient and economic execution of costly deep-depth drilling work becomes manifest increasingly. However, since it is very difficult to predict duration and cost of boring work with acceptable reliability because of many uncertain events during the execution, efficient and organized work management for drilling is not easily achievable. Especially, the round trip that discretely occurs because of the abrasion of bit takes more time as the depth goes deeper and it has a great impact on the work performance. Therefore, a technology that can simulate the occurrence timing and depth of round trip in advance and therefore optimize them is essentially required. This study divided the abrasion state of bit into eight steps for simulation cases and developed a forecast algorithm, i.e., TOSA which can analyze the depth and timing of round trip occurrence. A methodology that can divide a unit section for simulation has been suggested; while the Bourgoyne and Young model has been used for the forecast of drilling rates and bit abrasion extent by section. Lastly, the designed algorithm has been systemized for the convenience of the user.

A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System (OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로)

  • Lee, Key Chang;Hong, Jun Hee;Lee, Kyu Keon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.

An Analysis on Technology for Domestic Geothermal Power Plant (한국형 지열발전 기술 분석)

  • Chang, Ki-Chang;Baik, Young-Jin;Yoon, Hyung-Kee;Na, Ho-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.571-571
    • /
    • 2009
  • 지열은 날씨와 기온 등에 영향을 받지 않고 연중 가동할 수 있어 기저부하를 담담할 수 있는 유일한 신재생에너지 자원이므로 이에 대한 기술개발이 시급하다. 우리나라는 비화산지대이며 지중 온도가 가장 높은 지역의 5km에서 약 $170^{\circ}C$ 내외이므로 외국에 비해 지온경사도가 크지 않은 편이다. 그리고 3km 이상에서는 지하대수층이 거의 존재하지 않기 때문에 지열발전을 위해서는 EGS 기법을 도입할 수 밖에 없는 실정이다. 그리고 지열수를 확보할 수 있는 온도범위가 약 $100{\sim}150^{\circ}C$ 정도이므로 이에 적합한 지열발전 플랜트를 선정할 필요가 있다. 일반적으로 지열발전에 적용되는 플랜트는 건증기 지열발전, 플래쉬증기 지열발전, 바이너리 사이클 지열발전으로 분류할 수가 있으나 국내 여건에 맞는 방식으로서 바이너리 사이클 발전으로서 ORC 플랜트 또는 Kalina 사이클 플랜트가 적합하므로 이에 대한 기술 개발이 적극적으로 이루어져야 한다. 따라서 국내 지열발전의 기술개발에 있어서 핵심요소는 심부천공 및 EGS를 위한 인공파쇄기술과 지상 플랜트로서 저온지열 발전 플랜트의 기술확보가 필요한 실정이다. 이와 같은 기술개발이 완성되면 발전 뿐만아니라 집단지역난방, 온실 및 양어장 등에도 열공급이 가능한 열병합발전이 가능하게 될 것이다. 또한, EGS 기술로서 상업적 성공을 이룬 것은 세계적으로 2~3개 사례에 불과한 신기술로서, EGS 기술의 국내 조기 실현으로 기술 선점 및 해외 수출을 모색할 필요가 있다. 그리고 심부 지열자원은 국내 어디에나 부존하는 ubiquitous 자원이며 이산화탄소 배출이 전무한 청정 국산 에너지 자원이나, 이의 개발에는 높은 초기 투자비와 risk를 요하므로 민간 업체의 투자가 제약을 받는다. 따라서 정부의 적극적인 지원하에 산.학.연 중심으로 시범보급이 우선 이루어진 후 민간의 자발적 투자를 통한 지열 개발을 유도할 필요가 있다.

  • PDF