DOI QR코드

DOI QR Code

Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications

고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향

  • Published : 2018.12.01

Abstract

Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Keywords

HJTOCM_2018_v33n6_1_f0001.png 이미지

(그림 1) 고온에서의 동작이 필요한 응용분야

HJTOCM_2018_v33n6_1_f0002.png 이미지

(그림 2) C cluster를 감소 시키기 위한 High-k 물질을 이용한 게이트 절연막 구성

HJTOCM_2018_v33n6_1_f0003.png 이미지

(그림 3) SiC CMOS 기반 linear voltage regulator

HJTOCM_2018_v33n6_1_f0004.png 이미지

(그림 4) SiC CMOS 기반 OP amplifier

HJTOCM_2018_v33n6_1_f0005.png 이미지

(그림 5) ETRI의 6인치 기반 SiC 전력소자 (a) SBD, (b) MOSFET 제작 웨이퍼 및 SEM단면도

HJTOCM_2018_v33n6_1_f0006.png 이미지

(그림 6) ETRI에서 개발한 (a) SiC CMOS Inverter 및 (b) 전압전달특성

HJTOCM_2018_v33n6_1_f0007.png 이미지

(그림 7) SiC LIGBT소자 구조 및 전기적 특성: (a) LIGBT 단면도 및 제작 이미지, (b) 전기적특성 (왼쪽: Out-put 특성, 오른쪽: 항복전압)

<표 1> 기판재료에 따른 반도체 물성

HJTOCM_2018_v33n6_1_t0001.png 이미지

<표 2> 절연막 성장 및 전후처리 기술에 따른 계면특성 및 채널이동도

HJTOCM_2018_v33n6_1_t0002.png 이미지

<표 3> 고온에서 검증 된 오믹접촉 기술

HJTOCM_2018_v33n6_1_t0003.png 이미지

References

  1. https://xlab.stanford.edu/research.html
  2. J.A. Pellish and L.M. Cohn, "Technology Option for Extreme Environment Electronics," in Extreme Environment Electronics, Boca Raton, FL, USA: CRC Press, 2013, pp. 49-58.
  3. P.G. Neudeck, "SiC Integrated Circuit Platforms for High Temperature Applications," in Extreme Environment Electronics, Boca Raton, FL, USA: CRC Press, 2013, pp. 225-232.
  4. M.R. Werner and W.R. Fahrner, "Review on Materials, Microsensors, Systems, and Devices for High-Temperature and Harsh-Environment Applications," IEEE Trans. Ind. Electron., vol. 48, no. 2, 2001, pp. 249-257. https://doi.org/10.1109/41.915402
  5. A. Hassan, Y. Savaria, and M. Sawan, "Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 10, Oct. 2018, pp. 1-14
  6. Valle-Mayorga, Javier, et al., "High-Temperature Silicon-on-Insulator Gate Driver for SiC-FET Power Modules," IEEE Trans. Power Electron., vol. 27, no. 11, 2012, pp. 4417-4424. https://doi.org/10.1109/TPEL.2011.2182213
  7. 홍진균, 이재춘, "차세대반도체재료SOI (Silicon On Insulator) Wafer," 영남대학교 재료기술연구, 제1권 제1호, 2000, pp. 99-108.
  8. T. Kimoto, "Material Science and Device Physics in SiC Technology for High-Voltage Power Devices," Jpn. J. Appl. Phys., vol. 54, 2015, pp. 0401302:1-0401302:27.
  9. W.C. Lien et al., "4H-SiC N-Channel JFET for Operation in High-Temperature Environments," IEEE J. Electron Devices Soc., vol. 2, no. 6, 2014, pp. 164-167. https://doi.org/10.1109/JEDS.2014.2355132
  10. M. Cabello et al., "Advanced Processing for Mobility Improvement in 4H-SiC MOSFETs: A Review," Materials Sci. Semiconductor Process., vol. 78, 2018, pp. 22-31/ https://doi.org/10.1016/j.mssp.2017.10.030
  11. G.Y. Chung et al., "Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide," IEEE Electr. Device Lett., vol. 22, no. 4, 2001, pp. 176-178. https://doi.org/10.1109/55.915604
  12. E.O. Sveinbjornsson et al., "Sodium Enhanced Oxidation of Si-face 4H-SiC a Method to Remove Near Interface Traps," Mater. Sci. Forum, vol. 556-557, 2007, pp. 487-492. https://doi.org/10.4028/www.scientific.net/MSF.556-557.487
  13. T. Hatayama et al., "Remarkable Increase in the Channel Mobility of SiC MOSFETs by Controlling the Interfacial $SiO_2$ Layer Between $Al_2O_3$ and SiC," IEEE Trans. Electron Devices, vol. 55, no. 8, 2008, pp. 2041-2045. https://doi.org/10.1109/TED.2008.926647
  14. D. Okamoto et al., "Improved Inversion Channel Mobility in 4H-SiC MOSFET on Si Face Utilizing Phosphorus-Doped Gate Oxide," IEEE Electron Devices Lett., vol. 31, no. 7, 2010, pp. 710-712. https://doi.org/10.1109/LED.2010.2047239
  15. Y.K. Sharma et al., "Stable Phosphorus Passivated $SiO_2$/4H-SiC Interface Using Thin Oxides," Materials Science Forum., vol. 806, 2014, pp. 139-142 https://doi.org/10.4028/www.scientific.net/MSF.806.139
  16. A. Modic et al., "High Channel Mobility 4H-SiC MOSFETs by Anitmony Counter-Doping," IEEE Electron Device Lett., vol. 35, no. 9, 2014, pp. 894-896. https://doi.org/10.1109/LED.2014.2336592
  17. D. Okamoto et al., "Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation," IEEE Electron Device Lett., vol. 35, no. 12, 2014, pp. 1176-1178. https://doi.org/10.1109/LED.2014.2362768
  18. M. Cabello et al., "Impact of Boron Diffusion on Oxynitrided Gate Oxides in 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistors,"Appl. Phys. Lett., vol. 111, 2017, Article no. 042104.
  19. L. Kolaklieva et al., "Au/Ti/Al Contacts to SiC for Power Applications: Electrical, Chemical and Thermal Properties," In Int. Conf. Microelectron., Nis, Serbia, May 16-19, 2004, pp. 421-424
  20. L.J. Evans et al., "Development of an Extreme High Temperature n-Type Ohmic Contact to Silicon Carbide," Materials Sci. Forum, vol. 717, 2012, pp. 841-844.
  21. R.S. Okojie et al., "Reliability Assessment of Ti/$TaSi_2$/Pt Ohmic Contacts on SiC after 1000 h at $600^{\circ}C$" J. Appl. Phys., vol. 91, no. 10, 2002, pp. 6553-6559. https://doi.org/10.1063/1.1470255
  22. W.C. Lien et al., "4H-SiC N-Channel JFET for Operation in High-Temperature Environments," IEEE J. Electron Devices Soc., vol. 2, no. 6, 2014, pp. 164-167. https://doi.org/10.1109/JEDS.2014.2355132
  23. K. Gottfried et al., "High Temperature Stable metallization Schemes for SiC-Technology Operating in Air," In High-Temperature Electronic Materials, Devices Sensors Conf., San Diego, CA, USA, Feb. 22-27, 1998, pp. 153-158
  24. S. Shakti, and A. C. James, "Bipolar Integrated Circuits in 4H-SiC," IEEE Trans. Electron Devices, vol. 58, no. 4, 2011, pp. 1084-1090. https://doi.org/10.1109/TED.2011.2107576
  25. Y. Zhang et al., "Thermal Stability Study of n-Type and p-Type Ohmic Contacts Simultaneously Formed on 4H-SiC," J. Alloys Compounds, vol. 731, 2018, pp. 1267-1274. https://doi.org/10.1016/j.jallcom.2017.10.086
  26. N. Masato et al., "Experimental and Theoretical Investigations on Short-Channel Effects in 4H-SiC MOSFETs," IEEE Trans. Electron Devices, vol. 52, no. 9, 2005, pp. 1954-1962. https://doi.org/10.1109/TED.2005.854269
  27. M.P. Lam et al., "Punchthrough Behavior in Short Channel NMOS and PMOS 6H-Silicon Carbide Transistors at Elevated Temperatures," IEEE Trans. Electron Devices, vol. 22, no. 3, 1999, pp. 433-438.
  28. J.A. Valle-Mayorga et al., "A SiC NMOS Linear Voltage Regulator for High-Temperature Applications," IEEE Trans. Power Electron., vol. 29, no. 5, 2014, pp. 2321-2328. https://doi.org/10.1109/TPEL.2013.2279251
  29. D.T. Clark et al., "High Temperature Silicon Carbide CMOS Integrated Circuits," Mater. Sci. Forum, vol. 679-680, 2011, pp. 726-729.
  30. R.A.R. Young et al., "High Temperature Digital and Analogue Integrated Circuits in Silicon Carbide," Materials Science Forum, vol. 740, 2013, pp. 1065-1068.
  31. C.-M. Zetterling et al., "Future High Temperature Applications for SiC Integrated Circuits," Phys. Status Solidi C, vol. 9, no. 7, 2012, pp. 1647-1650. https://doi.org/10.1002/pssc.201100689
  32. S. Kargarrazi et al., "A monolithic SiC drive circuit for SiC Power BJTs," Int. Symp. Power Semiconductor Devices IC's, Hong Kong, China, May 10-14, 2015, pp. 285-288.
  33. H. Elahipanah et al., "$500^{\circ}C$ High Current 4H-SiC Lateral BJTs for High-Temperature Integrated Circuits," IEEE Electron Device Lett., vol. 38, no. 10, Oct. 2017, pp. 1429-1432. https://doi.org/10.1109/LED.2017.2737558
  34. C.-M. Zetterling et al., "Bipolar Integrated Circuits in SiC for Extreme Environment Operation," Semicond. Sci. Technol., vol. 32, 2017, pp. 1-11.
  35. Y. Zhang et al., "Development of 4H-SiC LJFET-Based Power IC," IEEE Trans. Electron Devices, vol. 55, no. 8, Aug. 2008, pp. 1934-1945. https://doi.org/10.1109/TED.2008.926676
  36. P.G. Neudeck et al., "Demonstration of 4H-SiC Digital Integrated Circuits Above $800^{\circ}C$," IEEE Electron Device Lett., vol. 38, no.8, Aug. 2017, pp. 1082-1085. https://doi.org/10.1109/LED.2017.2719280
  37. M. Alexandru et al., "SiC Integrated Circuit Control Electronics for High-Temperature Operation," IEEE Trans. Ind. Electron., vol. 62, no. 5, May 2015, pp. 3182-3191. https://doi.org/10.1109/TIE.2014.2379212
  38. A. Rahman et al., "High Temperature Data Converters in Silicon Carbide CMOS," IEEE Trans. Electron Devices, vol. 64, no.4, Apr. 2017, pp. 1426-1432. https://doi.org/10.1109/TED.2017.2665520
  39. H.A. Mantooth et al., "Emerging Trends in Silicon Carbide Power Electronics Design," CPSS Trans. Power Electron. Applicat., vol. 2, no. 3, Sept. 2017, pp. 161-169. https://doi.org/10.24295/CPSSTPEA.2017.00016
  40. J. Barlow et al., "An Integrated SiC CMOS Gate Driver," IEEE Appl. Power Electron. Conf. Exposition (APEC), Long Beach, CA, USA, Mar. 20-24, 2016, pp. 1646-1649.
  41. N. Kuhns et al., "Complex High-Temperature CMOS Silicon Carbide Digital Circuit Designs," IEEE Trans. Device Materials Reliability, vol. 16, no. 2, June 2016, pp. 105-111. https://doi.org/10.1109/TDMR.2016.2530664
  42. 43 Hitachi, Sept. 14, 2017. http://www.hitachi.com/New/cnews/month/2017/09/170914.pdf
  43. 충북대학교, "고온용 SiC CMOS 소자 기술연구 연구보고서," 한국연구재단, 2013.
  44. 한국전자통신연구원, "SiC기반 트렌치형 차세대 전력소자 핵심 기술개발 2017 연구보고서," 2017.
  45. J.I. Won et al., "Design and Fabrication of 4H-SiC Lateral IGBT with Drift Segmentation using Trench Process," The 25th KCS, Jungsung, Rep. of Korea, 2018, p. 896.
  46. Gartner, "Market Share: Semiconductor by End Market, Worldwide, 2017," 2018.