• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.026 seconds

Consideration on design procedure of room-and-pillar underground structure part II: selection of shape to design supports (주방식 지하구조물의 설계 방법 고찰 Part II: 지보 설계 필요 단면 검토)

  • Lee, Chulho;Hur, Jinsuk;Hyun, Younghwan;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.497-506
    • /
    • 2014
  • In this study, analysis results described in the companion paper was used to determine shapes of room-and-pillar underground structure. To select optimized shapes, structural stability, space applicability and vehicle applicability were considered. In the structural stability step, ratio between strength and stress of the pillar and the critical strain at the roof span were adopted. The space applicability was used to retain the sufficient space of underground structure as its purpose is for human activity. The vehicle applicability was used to consider a radius for rotation of construction equipments in the room-and-pillar underground structure. From the given procedure in this study, proper shapes of rock pillar and room can be selected to design supports at the pillar and roof.

Applicability Evaluation of IGM시s Theory Using the Results of Load Transfer Tests of Drilled Shafts (현장타설말뚝의 하중전이시험 결과를 이용한 IGM 이론의 적용성 평가)

  • 천병식;김원철;서덕동;윤우현
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.29-40
    • /
    • 2004
  • The bearing capacity of drilled shaft is affected by several factors, such as shaft length, shape, surface roughness, young's modulus of geomaterials and shaft, soil strength, confining stress and so on. However, there has been no design method of drilled shaft considering all factors mentioned above. Moreover, since geomaterials are simply classified as sand, clay and rock, there was no design criterion for IGM (Intermediate Geomaterials). Therefore, the rigorous design approach of drilled shaft was not possible by classical design method. However, since these characteristics were not considered in classical theories, bearing capacity was generally different ken practical value. In this study, the bearing capacity of drilled shaft with the IGM's theory was compared with those of classical theories. The results showed that classical method showed smaller values of bearing capacity than those of field load transfer data. Moreover, the evaluated value of bearing capacity with IGM theory corresponded fairly well with those of field data.

Design Improvement of the Road Expansion on a Deep Thick Soft Ground (대심도 연약지반 도로확장 공사에서의 설계 개선)

  • Kim, Tae-Hyung;Park, Tae-Young;Kim, Sung-Ryul;You, Sang-Ho;Kim, Kook-Han;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.89-99
    • /
    • 2012
  • The expansion of a road on soft ground could induce an additional settlement to the existing road because of the consolidation characteristics of the soft soil layer subjected to additional load by an adjacent banking. In such case, the existing road could be faced with various problems during the stages of the construction and maintenance, such as deterioration of not only the surface smoothness yielding the decrease in automobile performance safety but also the structural stability of the embankment. These kinds of problems are expected to occur more freguently especially for the deep ground level with a fairly thick soft soil layer. Therefore, they should be examined and studied adequately during the design stage. As a reference case study, this paper deals with the project named Namhae Expressway of 2nd Branch with the soft soil layer with the thickness upto about 50m. After a lengthy review of the original design, an improved design is proposed.

A Study on the Method of Analysis and Design of Benchmark Pile in Permafrost Area (영구동토지역에서의 수준말뚝의 안정성 검토 및 설계방법 연구)

  • Jo, Cheon-Hwan;Lee, Won-Je;Hong, Seong-Wan
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.15-26
    • /
    • 1993
  • Frost heave on foundation(or ice jacking) is defined that foundation is uplifted by heav- ing force exerted around foundation from freezing of soils. This phenominon is often occurred in the light -weight structure e.g, small building, electro - telegraph pole, street light, pipe line, budge and reference point of survey. Frost heave is the most important factor in design of foundation of structure and the key issue in understanding mechanism of foundation in permafrost area. In this study is reviewed the state of the art on the analysis method of frost heave in USSR and is suggested the design method of benchmark pile. On the basis of above results, this study suggests a design chart able to do esign simply the benchmark pile in Yakutsk region.

  • PDF

Stability Analysis and Design of Slope Reinforcing Method Using Anchored or Waste Tyre Wall (앵커 또는 폐타이어 벽체를 이용한 사면보강공법의 안정해석 및 설계)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.69-84
    • /
    • 1994
  • In the present study, the application of a method of anchored or waste tyre wall in reinforcing the unstable slope is investigated. For design purposes a method of external stability analysis of the reinforced slope, together with a method of internal stability analysis of a wall itself, is presented. In order to predict the passive resistance expected in the anchor or waste tyre Meyerhof's bearing capacity theory is moapaed and experimental results of stress distribution of a pile section under lateral loading is used. Hurray's pull-out teat results are compared with the passive resistances of anchors predicted by the proposed method, and alto the advantages in design are compared with a method of reinforced earth wall with steel strips. Finally a design example of reinforced slope using anchored or caste tyre wall is presented and the overall stability is analyzed in detail by the proposed method of analysis. The efficiency of a method of anchored or waste tyre wall is further analyzed, comparing with a method of changing geometry of the origin리 unstable slope.

  • PDF

A Study on the Groundwater Effects in the Design of Tunilel Lining (배수형 터널내 과다유입수가 터널의 안정에 미치는 영향)

  • Cheon, Byeong-Sik;Choe, Song-Am;Nam, Sun-Seong
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.125-140
    • /
    • 1995
  • Generally, the groundwater pressure is not considered in the design of concrete lining of bottom drainage tunnel. This design method implies that the phreatic surface is drawdown to the bottom of tullnel. When tile groundwater is continually supplied without changing of groundwater table, there is a possibility at which the groundwater pressure acting on the tunnel lining after the completion of tunnel. Therefore, the safety of tunnel lining must be checked in this case. In this paper, the stability of bottom drainage tunnel which is affected by groundwater discharge is analzed by using of the Finite Element Method at the 2 sections of subway where the groundwater level has a tittle change during the construction. As the result of analysis, the grouting for the water tightness and the permanent monitoring system of tunnel are required for maintaining of long-term stability of bottom drainage tunnel for the case of groundwater plassure acting on the tunnel lining is greater than that of design stage.

  • PDF

Prediction of the Shaft Resistance of Pile Sockets (암에 근입된 말뚝의 주면저항력 예측)

  • Seidel, J.P.;Cho, Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.281-293
    • /
    • 2002
  • Empiricism has characterized the traditional methods of pile design; in essence, pile design recommendations are based on the accumulated knowledge of pile behaviour based on the construction and subsequent load testing of piles in soil and rock. In this paper, the traditional approaches to design of piles in rock will be briefly reviewed. It will be shown that the unrelated empirical relationships developed fur rock lead to considerable uncertainty in the design of piles. A new method for predicting the shaft resistance of piles socketed into rock, and based on fundamental principles is outlined. It is shown that the shaft resistance predictions of this method agree well with the field test data for rock and hard soil. It is demonstrated by way of a limited parametric study that shaft roughness and socket diameter are critical factors in the performance of piles constructed in these materials. The application of the method to piles socketed into the granites and gneisses of Korea is discussed by way of a case study and by reference to recent direct shear tests on these rocks.

Numerical Analysis for Optimal Reinforcement Length Ratio According to Width-to-Height Ratio of Back-to-Back MSE (Back-to-Back 보강토옹벽의 옹벽폭비에 따른 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choon-Sik;Kim, Dong-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.69-76
    • /
    • 2020
  • Since the mechanically stabilized earth walls have a form of retaining wall compatible with a narrow section, the geogrid overlaps according to the separation distance between the walls. There is a problem that the overall behavior may occur in the state of being integrated with the stress change due to the interaction of the geogrid. Therefore, a careful approach is required at the design stage, but there are currently no design criteria or guidelines in Korea. This study investigated the optimal reinforcement length ratio according to the retaining wall width to height ratio (width to height ratio, Wb/H) for these back-to-back mechanically stabilized earth walls. Retaining wall width ratio is 1.1H, 1.4H, 1.7H, 2.0H for Case II of the FHWA design standard, and the height is 3.0 m, 5.0 m, 7.0 m, and 10.0 m, which are most commonly applied. Through numerical analysis, the appropriateness of the FHWA design standard and the optimal reinforcement length ratio according to the height of the retaining wall and the width of the retaining wall were proposed.

Application and Verification of Liquefaction Potential Index in Liquefaction Potential Assessment of Korean Port and Harbor (국내 항만 및 어항시설의 액상화 평가에 있어서 액상화 가능성 지수의 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.33-46
    • /
    • 2021
  • After the Gyeongju earthquake, which was the largest in the history of measuring instruments in Korea in 2016, and after the Pohang earthquake, where the pillars of pallet structures were destroyed in 2017, the seismic design standards for all domestic facilities have been revised and supplemented. In particular, during the investigation of the Pohang Earthquake damage cases, liquefaction damage that occurs mainly in countries with strong earthquakes such as the United States, Japan, and New Zealand was found, so studies are being conducted in depth to improve seismic design standards. In this study, the liquefaction potential assessment in the recently revised seismic design standard for port and harbor was reviewed, and an applicability review was conducted focusing on the newly cited liquefaction potential index (LPI). At this time, by varying the thickness and location of the sandy soil where liquefaction can occur, the LPIs for various cases were calculated and compared. Also, 22 LPI values in the practical port area were compared and reviewed along with performance of the liquefaction assessment based on the site response analysis using the boring-hole data of the actual 22 port sites.

Structural Analysis of CBS (Composite Basement Wall System)-RIB Underground Structures Using Numerical Modeling (수치해석을 통한 강합성 빔보강 지하 구조물의 거동분석)

  • Yoo, Han-Kyu;Kim, Yeon-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.39-44
    • /
    • 2010
  • In case of the design method, which is used in the inside and outside of the country, on corrugated multi plate structures, section modulus would be determined by assuming 2-dementioanl equivalent section of those structures. However, it is impossible to consider 3-dimentional effects when 2-dimentional design method is applied since structures are reinforced with a pattern of the 1200, 1600 mm reinforcements except the 800 mm reinforcement. Thus, in this study, technical specification standard is analyzed for the existing corrugated multi plate design methods, and section strengths, moments, and so on of equivalent and practical sections are compared and estimated using 3-dimentional FEM (finite element method) for semicircles and architectural features widely used. Based on the results of that analysis, analytical basis for 3-dimentional design of the CBS-RIB is suggested.