• Title/Summary/Keyword: geotechnical design

Search Result 1,815, Processing Time 0.028 seconds

A Prediction of N-value Using Regression Analysis Based on Data Augmentation (데이터 증강 기반 회귀분석을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Lee, Jae Beom;Park, Chan Jin
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.221-239
    • /
    • 2022
  • Unknown geotechnical characteristics are key challenges in the design of piles for the plant, civil and building works. Although the N-values which were read through the standard penetration test are important, those N-values of the whole area are not likely acquired in common practice. In this study, the N-value is predicted by means of regression analysis with artificial intelligence (AI). Big data is important to improve learning performance of AI, so circular augmentation method is applied to build up the big data at the current study. The optimal model was chosen among applied AI algorithms, such as artificial neural network, decision tree and auto machine learning. To select optimal model among the above three AI algorithms is to minimize the margin of error. To evaluate the method, actual data and predicted data of six performed projects in Poland, Indonesia and Malaysia were compared. As a result of this study, the AI prediction of this method is proven to be reliable. Therefore, it is realized that the geotechnical characteristics of non-boring points were predictable and the optimal arrangement of structure could be achieved utilizing three dimensional N-value distribution map.

Consideration of Engineering Strength and Filling Characteristics for Rubble-Ground Modification Method with Grout Injection (그라우트 주입식 사석기초 보강 공법의 개량체 강도 및 충전성에 대한 실험적 검토)

  • Kim, Hyeong-Ki;Han, Jin-Gyu;Kim, Jeong Eun;Ryu, Yong-Sun;Nguyen, Anh Dan;Kang, Gyeong-O;Kim, Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.47-59
    • /
    • 2022
  • A series of experiments were performed to investigate the design and application of a rubble-ground modification method with grout injection. A small-sized injection machine was designed, and the grouts with various mix proportions were injected into 25 mm aggregate using the designed small-sized injection machine. With the compressive strength of the grout ranging from 20 to 80 MPa, the uniaxial compressive strength of the grout-filling bodies with clean gravels was higher than 1/6th of the strength of grouts themselves. However, this fraction may reduce depending on the interface conditions. The erosion resistance of the hardened grout was evaluated, and it was determined that the grout with a strength greater than 15 MPa did not require erosion consideration. Moreover, a full-scale injection test was performed for 25 cm-sized rubbles in cages with a diameter greater than 1 m and a height of 1.2 m to evaluate the filling characteristics of the grout. Results from this test indicated that the grout flowability sensitively influenced the filling characteristics.

Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness (변형률 및 지반강성을 고려한 평판재하시험과 흙강성측정기의 탄성계수 비교)

  • Kim, Kyu-Sun;Shin, Donghyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.31-40
    • /
    • 2022
  • This study compares elastic moduli calculated using two stiffness testing methods with different strain ranges to evaluate the stress-settlement characteristics of foundation support layers. Elastic moduli were calculated by the soil stiffness gauge (SSG) in the micro-strain range and the plate load test (PLT) in the medium strain range. To apply the elastic moduli obtained by the two testing methods with different strain ranges to the design and construction of foundation soils, the correlation between each measurement value should be identified in advance. As a result of the comparative analysis of the elastic moduli calculated using the two methods in weathered soil and rock, which are representative support layers in Korea, the calculated elastic moduli differed depending on the types of soil and stress conditions. For various soil types, the static elastic modulus obtained by the PLT was reduced by 56% because of the difference in the strain level of the test compared with the dynamic elastic modulus obtained by the SSG. Therefore, the results show that it is necessary to apply corrections to the stress distribution, stress level, and dynamic effect according to the ground stiffness to effectively use the SSG instead of the PLT.

Estimation of Non-linear Strength and Stiffness for Silty Sands (실트질 모래지반의 비선형 강도 및 강성도 추정법)

  • Lee Kyung-Sook;Kim Hyun-Ju;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • In general typically granular soils contain a certain amount of fines. It is also widely recognized that foundation soils under working loads show highly non-linear behavior from very early stages of loading. In the present study, a series of laboratory tests with sands of different silt contents are conducted and methods to assess strength and stiffiness characteristics are proposed. Modified hyperbolic stress-strain model is used to analyze non-linearity of silty sands in terms of non-linear Degradation parameters f and g as a function of silt contents and Relative density Dr. Stress-strain curves were obtained from a series of triaxial tests on sands containing different amounts of silt. Initial shear modulus, which is used to normalize Degradation modulus of silty sands, was determined from resonant column test results. From the laboratory test results, it was observed that, as the Relative density increases, values of f decrease and those of g increase. In addition, it was found that values of f and g increase and decrease respectively as a Skeleton void ratio $(e_{sk})$ increases.

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Evaluation of Preconsolidation Stress Considering Small-Strain Shear Wave Velocity (미소변형 전단파 속도를 고려한 설행압밀하중 산정)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.5-16
    • /
    • 2009
  • Preconsolidation stress is one of the important design parameters in soft soils because the behavior of saturated soft soils changes dramatically at the preconsolidation stress. For the estimation of preconsolidation stress, the global vertical settlement without considering micro strain behavior has been considered. The purpose of this study is to propose and verify a new method called the "shear wave velocity method" for determination of the preconsolidation stress reflecting on particle behavior at the small-strain. In this study, the undisturbed soft soils obtained at Busan, Incheon and Gwangyang in Korea were used. The oedometer cell incoporated with the bender elements is used for the consolidation tests under the $K_0$ condition. The preconsolidation stress determined by the proposed method is compared with that estimated by Casagrande (e-log p'), Sridharan (log (1+e)-log p'), and Onitsuka (In(1+e)-log p') methods. This study suggests that the shear wave velocity method may determine simply the preconsolidation stress with considering the small-strain behavior.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

Evaluation Model for Lateral Flow on Soft Ground Using Commitee and Probabilistic Neural Network Theory (군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델)

  • Kim, Young-Sang;Joo, No-Ah;Lee, Jeong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.65-76
    • /
    • 2007
  • Recently, there have been many construction projects on soft ground with growth of industry and various construction problems concerning soft soil behavior also have been reported. Especially, foundation piles of abutments and (or) buildings which were constructed on the soft ground have been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches for this phenomena have been carried out, it is still difficult to assess the mechanism of lateral flow on soft ground quantitatively. And reliable design method for judgement of lateral flow occurrence is not established yet. In this study, PNN (probabilistic neural network) and CNN (committee neural network) theories were applied for judgment of lateral flow occurrence based on eat data compiled from Korea and Japan. Predictions of PNN and CNN models for new data which were not used during model development are compared with those predicted by conventional empirical methods. It was found that the developed PNN and CNN models can predict more precise and reliable judgment of lateral flow occurrence than conventional empirical methods.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.