DOI QR코드

DOI QR Code

Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness

변형률 및 지반강성을 고려한 평판재하시험과 흙강성측정기의 탄성계수 비교

  • 김규선 (삼성물산(주) 건설부문 기반기술팀) ;
  • 신동현 (삼성물산(주) 건설부문 TA팀)
  • Received : 2022.08.03
  • Accepted : 2022.09.21
  • Published : 2022.10.31

Abstract

This study compares elastic moduli calculated using two stiffness testing methods with different strain ranges to evaluate the stress-settlement characteristics of foundation support layers. Elastic moduli were calculated by the soil stiffness gauge (SSG) in the micro-strain range and the plate load test (PLT) in the medium strain range. To apply the elastic moduli obtained by the two testing methods with different strain ranges to the design and construction of foundation soils, the correlation between each measurement value should be identified in advance. As a result of the comparative analysis of the elastic moduli calculated using the two methods in weathered soil and rock, which are representative support layers in Korea, the calculated elastic moduli differed depending on the types of soil and stress conditions. For various soil types, the static elastic modulus obtained by the PLT was reduced by 56% because of the difference in the strain level of the test compared with the dynamic elastic modulus obtained by the SSG. Therefore, the results show that it is necessary to apply corrections to the stress distribution, stress level, and dynamic effect according to the ground stiffness to effectively use the SSG instead of the PLT.

본 연구에서는 기초 지지층의 응력-침하특성을 평가하기 위해 변형률 범위가 다른 두 가지 강성측정 시험법으로 산정한 탄성계수를 비교하였다. 미소변형률 범위의 흙강성측정기(SSG)와 중변형률 범위의 평판재하시험(PLT)이 탄성계수 산정에 이용되었다. 변형률 범위가 다른 시험방법으로 구한 탄성계수를 기초설계 및 시공실무에 적용하기 위해서는 각각의 값에 대한 상관관계가 사전에 파악되어야 한다. 국내의 대표적인 지지층인 풍화토 및 풍화암에서 두 가지 방법에 의한 탄성계수를 비교·분석한 결과에 따르면, 지반의 종류 및 응력조건에 따라 탄성계수가 상이하게 평가되는 것으로 나타났다. 다양한 조건의 지반에 대해 평판재하시험으로 산정한 정적 탄성계수는 흙강성측정기로 측정한 동적 탄성계수와 비교할 때, 시험의 변형률 수준 차이로 인해 56% 감소된 결과를 나타냈다. 따라서, 평판재하 시험을 대체하여 흙강성측정기를 효과적으로 사용하기 위해서는 지반강성에 따른 응력분포, 응력수준, 동적효과에 대한 영향을 보정하여 측정값을 적용할 필요가 있다.

Keywords

Acknowledgement

본 연구는 삼성물산(주) 건설부문의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Alshibli, K., Abu-Farsakh, M., and Seyman, E. (2005), "Laboratory Evaluation of the Geogauge and Light Falling Weight Deflectometer as Construction Control Tools", Journal of Material Civil Engineering, Vol.17, No.5, pp.560-569. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(560)
  2. ASTM D1195/D1195M (2021), Standard test method for repetitive static plate load tests of soils and flexible pavement components, for use in evaluation and design of airport and highway pavements, ASTM International.
  3. ASTM D1196/D1196M (2021), Standard test method for nonrepetitive static plate load tests of soils and flexible pavement components, for use in evaluation and design of airport and highway pavements, ASTM International.
  4. ASTM D6758 (2018), Standard test method for measuring stiffness and apparent modulus of soil and soil-aggregate in-place by electro-mechanical method, ASTM International.
  5. Clayton, C. R. I. (2011), "Stiffness at Small Strain: Research and Practice", Geotechnique, Vol.61, No.1, pp.5-37. https://doi.org/10.1680/geot.2011.61.1.5
  6. Fiedler, S., Nelson, C., Berkman, E. F., and DiMillio, A. (1998), "Soil Stiffness Gauge for Soil Compaction Control", Public Road, Vol.61, No.5, pp.5-10.
  7. Hardin, B. O. and Drenevich, V. P. (1972), "Shear Modulus and Damping in Soils: Measurement and Parameter Effects", Journal of the Soil Mechanics and Foundations Division, Vol.98, No.6, pp.603-624. https://doi.org/10.1061/JSFEAQ.0001756
  8. Huang, Y. H. (2004), Pavement Analysis and Design, 2nd Edition, Prentice Hall.
  9. KS F 2310 (2020), Standard test method for plate load test on soils for road, Korea Agency for Technology and Standards.
  10. KS F 2444 (2019), Standard test method for plate bearing test on shallow foundation, Korea Agency for Technology and Standards.
  11. Kim, D.-S., Seo, W.-S., and Kweon, G.-C. (2005), "Evaluation of Field Nonlinear Modulus of Subgrade Soils Using Repetitive Static Plate Bearing Load Test", Journal of Korean Geotechnical Society, Vol.21, No.6, pp.67-79 (in Korean).
  12. Kim, K.-S., Kim, D., Fratta, D., and Lee, W. (2011), "Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests", Journal of Korean Society of Civil Engineers, Vol.31, No.1C, pp.19-27 (in Korean).
  13. Kim, K.-S., Woo, W., Lee, C., and Lee, W. (2013), "Laboratory Soil Box Tests for Compaction Characteristics of Foundation Soils using Nondestructive and Penetration Tests", Journal of Korean Society of Hazard Mitigation, Vol.13, No.5, pp.93-101 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.5.093
  14. Kim, K.-S. (2015), "Comparison of Elastic Moduli of Subgrade Soils Using Plate Loading Test, Soil Stiffness Gauge and Dynamic Cone Penetrometer", Journal of Korean Geotechnical Society, Vol.31, No.3, pp.63-72 (in Korean). https://doi.org/10.7843/KGS.2015.31.3.63
  15. Lee, I. K., White, W., and Ingles, O. G. (1983), Geotechnical Engineering, Pitman.
  16. Lenke, L. R., McKeen, R. G., and Grush, M. P. (2003), "Laboratory Evaluation of GeoGauge for Compaction Control", Transportation Research Record, No.1849, pp.20-30.
  17. Nazzal, M. D. (2003), Field Evaluation of In-situ Test Technology for QC/QA During Construction of Pavement Layers and Embankments, Master's Thesis, Louisiana State University, Barton Rouge, LA, USA.
  18. Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, John Wiley & Sons.
  19. Santamarina, J. C., Klein, K., and Fam, M. (2001), Soils and Waves, John Wiley & Sons.
  20. Sawangsuriya, A., Edil, T. B., and Bosscher, P. J. (2003), "Relationship Between Soil Stiffness Gauge Modulus and Other Test Moduli for Granular Soils", Transportation Research Board, No.1849, pp. 3-10.
  21. Seyman (2003), Field evaluation of in-situ test technology for QC/QA during construction of pavement layers and embankments, Master's Thesis, Louisiana State University, Barton Rouge, LA, USA.
  22. Timoshenko, S. P. and Goodier, J. N. (1970), Theory of Elasticity, McGraw-Hill.
  23. Yoder, E. J. and Witczak, M. W. (1975), Principle of Pavement Design, 2nd Edition, John Wiley & Sons.