DOI QR코드

DOI QR Code

Evaluation of Preconsolidation Stress Considering Small-Strain Shear Wave Velocity

미소변형 전단파 속도를 고려한 설행압밀하중 산정

  • Yoon, Hyung-Koo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Chang-Ho (School of Civil and Environmental Engrg., Georgia Institute of Technology) ;
  • Kim, Joon-Han (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 윤형구 (고려대학교 건축.사회환경공학부) ;
  • 이창호 (조지아공대 토목환경공학과) ;
  • 김준한 (고려대학교 건축.사회환경공학부) ;
  • 이종섭 (고려대학교 건축.사회환경공학부)
  • Published : 2009.05.31

Abstract

Preconsolidation stress is one of the important design parameters in soft soils because the behavior of saturated soft soils changes dramatically at the preconsolidation stress. For the estimation of preconsolidation stress, the global vertical settlement without considering micro strain behavior has been considered. The purpose of this study is to propose and verify a new method called the "shear wave velocity method" for determination of the preconsolidation stress reflecting on particle behavior at the small-strain. In this study, the undisturbed soft soils obtained at Busan, Incheon and Gwangyang in Korea were used. The oedometer cell incoporated with the bender elements is used for the consolidation tests under the $K_0$ condition. The preconsolidation stress determined by the proposed method is compared with that estimated by Casagrande (e-log p'), Sridharan (log (1+e)-log p'), and Onitsuka (In(1+e)-log p') methods. This study suggests that the shear wave velocity method may determine simply the preconsolidation stress with considering the small-strain behavior.

포화된 연약지반의 거동 특성은 선행압밀하중을 기점으로 다양하게 변하기 때문에 정확한 선행압밀하중 산정은 연약지반 평가시 상당히 중요한 설계정수 이다. 선행압밀하중 평가를 위한 기존 방법들은 하중에 따른 침하량만을 산정할 뿐 입자의 미소변형 거동에 따른 입자 자체의 특성은 고려되지 않았다 본 논문의 목적은 입자의 미소변형 거동 특성을 반영한 전단파 속도를 이용하여 선행압밀하중을 산정하기 위한 방법을 제안하고 검증하는 것이다. 본 연구에서는 부산, 인천, 광양 지역에서 채취된 비교란 시료를 이용하였다. 횡방향 구속($K_0$ 조건)하에서 축 하중을 증가 시키며 전단파 속도를 측정 할 수 있는 벤더 엘리먼트가 설치된 압밀 셀을 이용하였다. 선행압밀하중은 기존에 널리 사용되고 있는 Casagrande (e-log p') 방법, Sridharan (log (1+e)-log p') 방법, 그리고 Onitsuka (In(1+e)-log p') 방법으로 산정하여 본 논문에서 제시된 방법으로 산정된 선행압밀하중과 비교하였다. 본 연구는 전단파 속도를 이용하여 선행압밀하중을 평가 할 수 있는 새로운 방법을 제안하였으며, 이는 미소변형 거동 특성을 고려한 새로운 방법으로 적용되기를 기대한다.

Keywords

References

  1. 김선형 (2007), 현장계측과 선행압밀하중에 의한 침하예측, 석사학위논문, 토목공학과, 서울시립대학교, 서울
  2. 김재필 (1998), 선행압밀하중 결정방법에 관한 비교 및 분석, 석사학위논문, 토목공학과, 동국대학교, 서울
  3. 김진섭, 이대명, 이남기, 정성교 (1999), "낙동간 삼각주에서 성토에 따른 압밀침하량의 역해석", 대한토목학회 학술발표회, pp.439-442
  4. 백원진, 이송, 정용은, 노태길, 양태선, 김주현 (2008), "준설 매립지반의 선행압밀하중 산정", 한국지반공학회논문집, 24(8), pp.61-79
  5. 이창호, 윤형구, 유정동, 이충호, 이종섭 (2007), "전단파 속도를 이용한 선행압밀하중 평가", 2007 대한토목학회 정기학술대회, pp.809-812
  6. ASTM D2435-04, 2004, "Standard Test Method for One-DimensionalConsolidation Properties of Soils Using Incremental Loading", Annual Book of ASTM Standard, Vol.04.08 https://doi.org/10.1520/D2435-04
  7. Becker, D. E., Crooks, J. H. A., Been, K. and Jefferied, M. G.(1987), "Work as a creiterion for determining in situ and yieldstresses in clays", Canadian Geotechnical Journal, 24, pp.549-564 https://doi.org/10.1139/t87-070
  8. Burland, J. B. (1990), "On the compressibility and shear strengthof natural clays", Geotechnique, 40(3), pp.329-378 https://doi.org/10.1680/geot.1990.40.3.329
  9. Burmister, D. M. (1951), ""The applications of controlled testmethods in consolidation testing"", In Symposium on ConsolidationTesting of Soils. American Society for Testing and Materials,Special Technical Publication STP 126, pp.83-97
  10. Butterfield, R. (1979), "A natural compression law for soils (anadvance on e-lnp'), Geotechnique, 29(4), pp.469-480 https://doi.org/10.1680/geot.1979.29.4.469
  11. Casagrande, A. (1936), "The determination of the pre-consolidationload and its practical siginificance", In proceedings of the $^{st}$ International Soil Mechanics and Foundation Engineering Conference,Cambridgd, Mass., 22-26 June 1936. Edited by A. Casagrande. Graduate School of Engineering, Havard University, Cambridge,Mass. 3, pp.60-64
  12. Crawford, C. B. (1964), "Interpretation of the consolidation test",Journal of the soil mechanics and foundations division, SM5,90(5), pp.87-102
  13. Dias Junior, M. S. and Pierce, F. J. (1995), "A simple procedurefor estimating preconsolidation pressure from soil compression curves",Soil Technology, 8, pp.139-151 https://doi.org/10.1016/0933-3630(95)00015-8
  14. Grozic, J. L. H., Lunne, T. and Pande, S. (2003), "An oedometertest study on the preconsolidation stress of glaciomarine clays",Canadian Geotechnical Journal, 40(5), pp.857-872 https://doi.org/10.1139/t03-043
  15. Hegazy, Y. A. and Mayne, P. W. (2006), 'A Global StatisticalCorrelation between Shear Wave Velocity and Cone PenetrationData', Site and Characterization, pp.243-248 https://doi.org/10.1061/40861(193)31
  16. Holtz, R. D. and Kovacs, W. D. (1981), An introduction to Geotechnical Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ
  17. Hong, Z. and Han, J. (2007), "Evaluation of Sample Quality of Sensitive Clay Using Intrisic Compression Concept", Journal of Geotechnical and Geoenvironmental Engineering, 133(1), pp.83-90 https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(83)
  18. Houlsby, G. T. and Sharma, R. S. (1999), "A conceptual modelfor the yielding and consolidation of clays", Geotechnique, 49(4),pp.491-501 https://doi.org/10.1680/geot.1999.49.4.491
  19. Imai, G. (1979), "Development of New Consolidation Test ProcedureUsing Seepage Force", Soils and Foundations, 19-3, pp.45-60
  20. Janbu, N. (1969), "The resistance concept applied to deformationof soils", In Proceediongs of the 7th International Soil Mechanicsand Foundation Engineering Conference, Mexico City, August 1969.A. A. Balkema, Rptterdam, Boston. Vol.1, pp.191-196
  21. Jose, B. T., Sridharan, A. and Abraham, B. M. (1989), "Log-log method for determination of preconsolidation pressure", Geotechnical Testing Journal, ASTM, 12(3), pp.230-237 https://doi.org/10.1520/GTJ10974J
  22. Lee, C., Lee, J. S., Lee, W. and Cho, T. H. (2008), "Experiment setup for shear wave and electrical resistance measurements in anoedometer", Geotechnical Testing Journal, ASTM, 31(2), pp.149-156
  23. Mayne, P. W. and Rix, G. J. (1993), "$G_{max}$-qc Relationships for Clays", Geotechnical Testing Journal, ASTM, 16(1), pp.54-60 https://doi.org/10.1520/GTJ10267J
  24. Morin, P., Leroueil, S. and Samson, L. (1983), "Preconsolidation pressure of Champlain clays", Part 1. In-situ determination. Canadian Geotechnical Journal, 20, pp.782-802 https://doi.org/10.1139/t83-083
  25. Nagaraj, T. S. and Srinivasa Murthy, B. R. (1983), "Rationalizationof Skempton''s compressibility equation", Geotechnique, 33(4), pp.433-443 https://doi.org/10.1680/geot.1983.33.4.433
  26. Onitsuka, K., Hong, Z., Hara, Y. and Yoshitake, S. (1995), "Interpretation of oedometer test data for natural clays", Soils and Foundations, 35(3), pp 61-70 https://doi.org/10.3208/sandf.35.61
  27. Robertson, P. K and Fear, C. E. (1995), "Liquefaction of sandsand its evaluation", "IS TOKYO'95", First International Conferenceon Earthquake Geotechnical Engineering, Keynote Lecture, November 1995
  28. Santamarina, J.C., Klein, K.A. and Fam, N.A. (2001), Soils and Waves, John wiley & Sons
  29. Schmertmann, J. H. (1955), "The undisturbed consolidation behaviorof clay", Transactions of the American Society of Civil Engineers, 20, pp.1201-1233
  30. Sridharan, A., Abraham, B. M. and Jose, B. T. (1991), "Improvedtechnique for estimation of preconsolidation pressure", Geotechnique,41(2), pp.263-268 https://doi.org/10.1680/geot.1991.41.2.263
  31. Wang, L. B. and Frost, J. D. (2004), "Dissipated strain energy methodfor determining prreconsolidation pressure", Canadian GeotechnicalJournal, 41(4), pp.760-768 https://doi.org/10.1139/t04-013