• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.021 seconds

A Prediction of Behavior of Granular Soils Based on the Advanced Elasto Plastic Model (개선된 탄.소성 구성모델을 이용한 사질토의 응력-변형률 거동예측)

  • Park, Byeong-Gi;Im, Seong-Cheol;Lee, Gang-Il
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.81-90
    • /
    • 1995
  • Based on the close investigation of Lade elasto -plastic model, this study proposes a new elasto -plastic constitutive model for foundation composed of granular soils. The new model contains 1st stress invariant in plastic potential function as well as yield function, which is different from Lade original model. Both these functions called a correction function include a correction term. To validate the new analytical model, it was compered with some previous models. Comparison between the test results and numerical results using Lade and new model was carried out concerning Sacramento River sand, U.S.A and Backma River sand. The conclusion was obtained that more refined model well be deft.eloped throughout this research.

  • PDF

Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Granular Soil (불포화 사질토의 거동예측을 위한 구성식 개발)

  • 송창섭;장병욱
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated soil and to confirm the application'of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. The application of the model to silty sands is confirmed by the comparison between test and predicted results. During drying -wetting and loading -unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. Predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsaturated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore. recommended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF

Effect of Chewlical Transport on Stability of Earth Embankment

  • Ahn, Tae bong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.109-126
    • /
    • 1996
  • In this study, the chemical fluid considered is sodium chloride sloutions. The concentrations for the sodium chloride solutions are varied from 0 to 20%. A series of lab oratory triaxial tests are performed on the cylindrical specimens of sand bentonite mixture with different (5, 10, 15%) sodium chloride content solutions. Deformation(elastic modulus, E) and strength (cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests and they are expressed as functions of conf'ming pressure and sodium chloride solution concentrations. The stress-strain-strength behavior based on the above strength parameters is introduced to the finite element method with a residual flow procedure (RFP). By integrating a slope stability (limit equilibrium) procedure in the finite element method, factors of safety with time are computed.

  • PDF

Numerical analysis of Bearing Capacity and Progressive Failure of Footings (기초지반의 지지력 및 진행성 파괴에 대한 수치해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.139-146
    • /
    • 1997
  • The failure of footing generally involves the concentration of deformation into one or more narrow bands. With the displacement of the footing, the failure plane will subsequently form The purpose of this paper is to assess the capabilities of numerical techniques to predict bearing capacity and progressive failure of footings. By using the method of large deformation theory and strain softening we have investigated the progressive failure of strip footing on undrained clay. This paper describes the procedure to predict the entire loadfisplacement curve and the failure mechanism of strip footing. The presented results show that it is Possible to analyze the Post Peak behavior of strip footing numerically and to give a progressive failure mechanism clearly.

  • PDF

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

Displacement of Sand Layer during Deep Excavation (깊은 굴착에 따른 사질토 지반의 변형)

  • 유태성;신종호
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.81-92
    • /
    • 1985
  • Braced excavation for a new building was carried out at a very close proximity of an existing tall building of T.hick columns are supported by indict.ideal spread footings on sand layer The excavation was planned to reach far below the footing level of the existing building. To assess the foundation performance and stability of the existing building, the behavior of 9round subjected to loss of confinement from excavation was analytically studied using finite element method. Field instrumentation was also conducted to monitor the actual ground responses during excavation. Based on these studies, various remedial measures weere taken to minimize the adverse effects to the building, and excavation was successfully completed. This paper presents the results from the analytical studies and field monitoring, and measured and measured responses at different stages of excavation.

  • PDF

Experimental Study on the Effect of Arrangement of Cylindrical Countermeasures on Debris Flow Impact Load (원통형 대책구조물의 배치조건에 따른 토석류의 충격하중에 대한 실험적 연구)

  • Cho, Heungseok;Kim, Beomjun;Yune, Chanyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.135-148
    • /
    • 2020
  • In this study, to investigate the effect of the array of cylindrical baffles on debris flow impact load, a series of small-scale tests were conducted according to varying row numbers of installed baffles in the flume. After the test, the behavior of debris flow interacting with baffles during the flow process was investigated. Based on the results, the influence varying velocity and flow depth on Froude number and dynamic pressure coefficient were analyzed. Test results showed that the greatest peak impact load occurred at the second row of baffle arrays. The dynamic pressure coefficient was also estimated by suggested equation and compared with previous studies.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Experimental Study on Visco-Plastic Characteristics of Silicate-Grouted Soil (물유리계 약액고결토의 점.소성특성에 관한 실험적 연구)

  • 정형식;유재일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.53-62
    • /
    • 1988
  • When a ground soil is under the constant continuous stress less than the failure strength of that soil, its deformation, in some cases, will increase continuously as time goes on due to creep phenomena. Deformation of soil caused by creep behavior will appear in various types depending on the elastic, plastic, viscous properties of soil. Therefore in this study, visco-plastic characteristics of grouted soil was studied by analysing the result of uniaxial creep test on the grouted soil. As a result of this research, it was found that the rheological model of grouted soil can be decided as Vyalov model and the visco-plastic properties of grouted soil is influenced by the content of silicate in grout.

  • PDF