• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.041 seconds

An Investigation of the deformation of underground excavations in slat and potash mines

  • Kwon, Sang-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.83-114
    • /
    • 1998
  • The most widely accepted method for understanding the deformation mechanism of rock is from the use of computer simulation. However, if the changes in rock properties after excavation are significant this will prevent the computer simulation kent predicting the deformation with acceptable accuracy. If the deformations are, however, carefully measured in situ, the resulting data can be more useful far predicting the deformational behavior of underground openings, since the effect of the parameters which influence the deformational behavior are included in the measurement. In this study, extensive data analyses were carried out using the deformation measurements from the Waste Isolation Pilot Plant (WIPP), which is a permanent nuclear waste repository The results from computer simulations were compared with field measurements to evaluate the assumptions used in the computer simulations, For better description of the deformational behavior around underground excavations, several techniques were developed, namely: (a) the calculation of the zero strain boundary; (b) the evaluation of the influence of adjacent excavations on the deformational behavior of pre-excavated openings; (c) the description of the deformational behavior using in situ measurements; (d) the calculation of the shear stress distribution; and (e) the application of a Neural Network for the prediction of opening deformation.

  • PDF

A study on the maintenance methods of the multi-purpose double-deck tunnel (다목적 터널의 기능별 유지관리 방법에 대한 고찰)

  • Moon, Hoon-Ki;Song, In-Cheol;Kim, Jae-Won;Lee, Hye-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.83-93
    • /
    • 2017
  • Recently, the development of multi-purpose tunnel that has functions of roads and waterways has been attention for efficient utilization of underground space. However, there is no study on the multi-functional tunnels behavior for the convert of iterative function and change of water pressure. In this study, the vulnerable section was analyzed due to repeated functional change. A basic review was implemented for the operation of the multi-purpose double-deck tunnel. Also, the vulnerable section for convert of iterative function of multi-functional tunnel has been analyzed by simulation. Management of multi-functional tunnel should considered in various analyzed and some problems. The criteria for management of multi-functional tunnels is proposed.

Comparison of Critical Tractive Forces for Application of Soil Improvement Material to Bank Revetment Work (호안 제방사면 보강을 위한 지반개량재의 한계소류력 비교)

  • Kim, You-Seong;Kim, Jae-Hong;Seo, Se-Gwan;Bhang, In-Hwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.65-73
    • /
    • 2015
  • The bank revetment work which is conducted on the slope of river bank to protect against flowing water as a geotechnical structure has been applied as an average value of critical tractive force based on domestic and international standard design. Currently, an appropriate evaluation is needed for the hydraulic stability and geotechnical behavior analysis of bank revetments because of the effects of climate change and ambiguous design criterion. This study has compared the critical tractive forces of soil improvement material and conventional materials used for the bank revetment work. Through various experiments, the shear strength of mixtures with soil improvement material was investigated by curing time and mixture ratio. It was found that the critical tractive force of the mixture obtained from a scour test is suitable to the reinforcement of the slope of river bank which has problems such as seepage erosion and scour.

A study on the stability analysis for double deck tunnel branch geometry (복층터널 분기 기하구조에 따른 안정성 검토에 관한 연구)

  • Park, Woo-Jeong;Jang, Namju;Kim, Kihwan;Choi, Chang-rim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.393-404
    • /
    • 2018
  • The tunnel can be planned to connect to underground roadway and surface road. The large tunnel and branch section are made when the ramp tunnel access to the main tunnel. In the branch section, stress concentration can be assigned and it can be very important for the stability of the tunnel. This study assessed the behavior of rock pillar in double deck tunnel diverging area by using a two dimensional numerical analysis. This study evaluated different safety factors according to pillar width and the ramp tunnel position in branch. By the assessment of the strength-stress ratio, tunnel pillar width is suggested in order to secure the safety factor 1.5.

Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils (동결토의 일축압축강도와 전단강도 상관관계 분석에 관한 연구)

  • Kang, Jae-Mo;Lee, Jang-Guen;Lee, Joonyong;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • The mechanical behavior of frozen soils is different from that of unfrozen soils due to the phase change between water and ice. The strength characteristics of frozen soils are governed by the intrinsic material properties such as grain size, ice and water content, air bubbles, and by externally imposed testing conditions such as temperature, freezing time, and strain rate. Especially, the strength of the frozen soils is generally higher than that of unfrozen soils due to ice binding capacity with soil particles, and is strongly affected by a highly complex interaction between the solid soil skeleton and the pore matrix, composed of ice and unfrozen water. In this study, the direct shear test and unconfined compression test are carried out inside of a large-scaled freezing chamber, and the relationships between cohesion and unconfined compression strength under various freezing temperature conditions are discussed.

A Geotechnical Parameter Estimation of Underground Structures in Elasto -plastic Condition (지하공간 건설시 탄.소성 모델에 의한 지반계수 추정)

  • Lee, In-Mo;Kim, Dong-Hyeon;Lee, U-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.85-94
    • /
    • 1997
  • The design and construction of underground structures contain many substantial mincer dainties. A reasonable estimation of geotechnical parameters is of paramount importance and must be one of the most difficult tasks in designing and constructing underground structures. If the plastic zone exists by tunnel excavation, the ground response may also be dependent on the yield criterion mainly composed of strength parameters. In order to estimate unknown model parameters from the in-situ measurements as well as prior estimates for designing tunnels which have plastic zones, the Extended Bayesian Method(EBM) is adopted : an elasto-plastic finite element program is linked to the EBM as a mathematical model to predict the ground response. Mohr-Coulomb failure criterion is used to represent the plastic behavior. A hypothetical underground site, where the ground behaves elasto-plastically, is adopted to demonstrate the validity of the proposed feedback system.

  • PDF

Seepage Analysis of Weathered Granite Model Embankment Using TDR Sensor (분포형 TDR센서를 이용한 화강풍화토 대형모형제방의 침투거동 해석)

  • Kim, Jin-Man;Park, Min-Cheol;Jo, Won-Beom;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the seepage behavior has been analyzed, which is the most important in determining the stability of the embankment. Large-scale embankment of weathered granite has been installed and TDR (time domain reflectory) sensors were used to detect the seepage lines. The TDR graphs could be separated into 3 sections, which are initial, unsaturated and saturated zones. TDR sensor can detect seepage line more easily than point sensor without analysis. Comparisons of the results of numerical analyses and the TDR sensors showed differences at water level rising condition, and then Comparisons of the results generally showed good agreement at another condition.

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

Evaluation of Normalized Behaviors of Bridge Foundations Reinforced by Micropiles (마이크로파일로 보강된 교량기초의 정규화 거동 평가)

  • Park, Seong-Wan;Jung, Dong-Jin;Kwak, Ki-Seok;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The purpose of this study is to evaluate the normalized behaviors of existing bridge foundations reinforced by micropiles. In order to do numerical method a finite element program was used to predict the micropile behavior and quantify their reinforcing effects on existing bridge foundations. In addition, the installation effects of battered micropiles on existing foundations were compared with vertically reinforced bridge foundations. Based on the study performed, it was found that the use of battered micropiles more efficiently reduces displacement of existing foundations than vertically installed micropiles under vertical and horizontal loadings, respectively. The batter angle of micropiles was also found to be most effective at about $15^{\circ}{\sim}20^{\circ}$ in reducing the vertical displacement. The horizontal reinforcing effect continues to be larger with an increase in batter angles. So, it is believed that the results presented could give an idea to enhance In-service performance of existing bridge foundations reinforced by micropiles.

Building Information Model (BIM) and Geotechnical Baseline Report (GBR) for improving Project Management Tools of Underground Works

  • Muhammad Tajammal KHAN;Masahide HORITA
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.532-539
    • /
    • 2024
  • Among various risk factors that need managing in large scale complex infrastructure projects, geotechnical risk is one of the most prominent factor particularly for underground works like tunnels. Uncertainties in soil conditions cannot be avoided 100% even after extensive geotechnical investigations. Therefore, underground works face large delays and cost overrun especially for hydropower projects in developing countries. Its uncertainty ex ante and ex post directly cause increased transaction cost in terms of contract administration, claims, variation orders and disputes. It also reduces trust and increases opportunistic behaviors due to asymmetric information between the parties. Subsequently, parties are spending more time on claim management rather than handling the project execution. Traditional project management tools are becoming less effective under these conditions. FIDIC published the Conditions of Contract for Underground Works wherein a Geotechnical Baseline Report (GBR) sets out the allocation of risks between the parties for subsurface physical conditions determining the foreseeable and unforeseeable conditions. At the same time, Building Information Modeling (BIM) is being adopted for efficient design, quality control and cost management. In this study, soil classification along the tunnel alignment for on-going hydropower projects is modelled in the virtual environment of Autodesk Revit (2024). The actual soil encountered along the tunnel during construction stage can be compared with the baseline conditions. In addition, BIM serves as a central source providing symmetric information to the Parties to develop an environment of trust and coordination. It is anticipated that these tools will improve the project management skills for underground works through minimizing the opportunistic behavior and transaction cost.